SDNB Vaishnav college for women, Chromepet, Chennai-44 I - year B. Sc Computer Science I-semester Unix Lab programs (UCS/CP/1002)

Exercise 1: write a shell script, which gets executed the moment the user logs in, it should display the message GOOD MORNING / GOOD AFTERNOON / GOOD EVENING depending on the time and user logs in.
program
\# based on the login time say GM/ GAN/GE
echo "your name:"
read n
current_time= $\$\left(\right.$ date + " $\left.\% H^{\prime \prime}\right)$
current_session=\$ (date +"\%p")
echo "currently the time is \$current_time o' clock \$current_session"
if [\$current_time -1t 12];
then
echo " GOOD MORNING \$n"
elif [[\$current_time -gt 12 \&\& \$current_time -1t 16]];
then
echo "GOOD AFTERNOON \$n"
else
echo "GOOD EVENING \$n"
fi
exit
output:
administrator@ubuntu: ${ }^{\sim} /$ rr\$./logtime. sh
your name:
aswini
currently the time is 08 o' clock AM GOOD MORNING aswini

Exercise 2: Write a shell script to search a file from the current directory in any of the sub-directories and report the path

program

\# program to search a file
echo "Enter the name of the file"
read file1
find ../ -name \$file1 -print
output
administrator@ubuntu: / rr\$./ex2.sh
Enter the name of the file
palin. sh
../rr/palin.sh

Exercise 3: Write a function G0 which would change the $\$$ prompt to the current directory name in which you are working. Thus if you are working in $¥ u s r \neq a c c ~ t h e ~$ prompt should be $¥ u s r ¥ a c c$

program

\# Change the prompt
fun_go ()
\{

```
        echo "this function changes the prompt to present working directory"
```

 echo
 PS1=’ [¥u@¥h]¥w\$’
 echo \$PS1
 \}
 fun_go
 output
 administrator@ubuntu: / /rr\$./ex33. sh
this function changes the prompt to present working directory
administrator@ubuntu: / rr\$
exercise 4: write a shell script to find whether an input year is leap year or not program
\#program to find the year is leap or not
echo "enter the year"
read y
ans=` expr \$y \% 4
if [\$ans -eq 0]
then
echo "\$y is a leap year"
else
echo "\$y is not a leap year"
fi
output
administrator@ubuntu: / rr\$./leapyear.sh
enter the year
2012
2012 is a leap year
administrator@ubuntu: /rr\$./leapyear. sh
enter the year
2001
2001 is not a leap year

Exercise 5: Write a shell script to find out the greatest among three inputs.

Program

\#program to find the greatest among three digits
echo "enter the first number"
read no1
echo "enter the second number"
read no2
echo "enter the third number"
read no3
if [\$no1 -gt \$no2 -a \$no1 -gt \$no3]
then
echo "\$no1 is greatest"
elif [\$no2 -gt \$no3]
then
echo "\$no2 is greatest"
else
echo "\$no3 is greatest"
fi
output
administrator@ubuntu: / /rr\$./greatest.sh
enter the first number
45
enter the second number
23
enter the third number
67
67 is greatest

Exercise 6: write a shell script to check if the input number is prime or not program
\#program for prime number checking
echo "enter the number"
read num
$\mathrm{i}=2$
while [\$i -1t \$num]
do
$\mathrm{k}=`$ expr \$num \% \$i` if [\(\$ \mathrm{k}\)-eq 0] then echo "the number is not a prime number" exit fi \(\mathrm{i}=` \operatorname{expr} \$ \mathrm{i}+1 `\)
done
echo "the number is prime"
output
administrator@ubuntu: ${ }^{\sim} /$ rr \$./prime. sh
enter the number
45
the number is not a prime number
administrator@ubuntu: ${ }^{\sim} /$ rr \$./prime. sh
enter the number
5
the number is prime

Exercise 7: Write a shell script to check if the input string is palindrome or not program
\# program to check for palindrome
echo "enter the string for palindrome check"
read str1
len=` echo \$str1|wc -c`
len=`expr \$len - 1`
echo "the string $\$$ str1 length is = \$len"
while [\$1en -gt 0]
do
rev=\$rev`echo \(\$\) str1 |cut -c \$1en`
1en=` expr \$1en - 1`
done
echo "the reversed string is \$rev"
if [\$str1 ! = \$rev]
then
echo "the given string is not a palindrome"
else
echo "the given string is a palindrome"
fi
output
administrator@ubuntu: ${ }^{\sim} /$ rr \$./palin. sh enter the string for palindrome check

madam

the string madam length is = 5
the reversed string is madam
the given string is a palindrome
administrator@ubuntu: ${ }^{\sim} /$ rr \$./palin. sh
enter the string for palindrome check
computer
the string computer length is $=8$
the reversed string is retupmoc
the given string is not a palindrome

Exercise 8: Program to reverse the given number
Program
\# reverse the number
echo "enter the number for reversal"
read str1
len=` echo \(\$\) str \(1 \mid\) wc -c \(1 \mathrm{en}=` \operatorname{expr} \$ 1 \mathrm{en}-1 `\) echo "the string \$str1 length is = \$1en" while [\(\$ 1 \mathrm{en}-\mathrm{gt} 0\)] do rev=\$rev` echo $\$$ str1 \mid cut -c $\$ 1$ en
echo \$rev
$1 \mathrm{en}=` \operatorname{expr} \$ 1 \mathrm{en}-1 `$
done
echo "\$rev"
output
administrator@ubuntu: ${ }^{\sim} /$ rr \$./revstring. sh
enter the number for reversal

12345
the string 12345 length is $=5$

Exercise 9: Write a shell script to print all the multiplication tables (up to 10) between 2 given number

program

\#program for multiplication tables (up to 10) between 2 given number echo "enter the table1"
read n
echo "enter the table2"
read n1
while [$\$ \mathrm{n}-1 \mathrm{e} \$ \mathrm{n} 1$]
do
count=1
echo "printing \$n table"
while [\$count -le 10]
do
table1=` expr \(\$\) count \(¥ * \$ n^{`}\)
echo "\$count * \$n =" \$table1
count=` expr \$count + 1`
done
$\mathrm{n}={ }^{`} \operatorname{expr} \$ \mathrm{n}+1^{`}$
done
output
administrator@ubuntu: ${ }^{\sim} /$ rr\$./multtable. sh
enter the tablel
2
enter the table2
4
printing 2 table
$1 * 2=2$
$2 * 2=4$
$3 * 2=6$
$4 * 2=8$
$5 * 2=10$
$6 * 2=12$
$7 * 2=14$
$8 * 2=16$
$9 * 2=18$
$10 * 2=20$
printing 3 table
$1 * 3=3$
$2 * 3=6$
$3 * 3=9$
$4 * 3=12$
$5 * 3=15$
$6 * 3=18$
$7 * 3=21$
$8 * 3=24$
$9 * 3=27$
$10 * 3=30$
printing 4 table
$1 * 4=4$
$2 * 4=8$
$3 * 4=12$
$4 * 4=16$
$5 * 4=20$
$6 * 4=24$
$7 * 4=28$
$8 * 4=32$
$9 * 4=36$
$10 * 4=40$

Exercise 10: Write a shell script to generate the series $1,5,2,10,3,15.50$ program
\# program to find the sum of $1,5,2,10,3,15, \ldots 50$
echo "enter the number"
read n
first=1
second=5
while [\$second -1e \$n]
do
printf "\$first, \$second,"
first=` expr \$first + 1`
second=` expr \$second + 5`
done
output
administrator@ubuntu: ${ }^{\sim} /$ rr \$./sumseries. sh
enter the number
50
$1,5,2,10,3,15,4,20,5,25,6,30,7,35,8,40,9,45,10,50$

Exercise 11: Write a shell script to find out the sum of series $1 / 2+2 / 3+. .+(n-1) / n$

program

\# program to find the sum of $1 / 2+2 / 3+$. . $+(n-1) / n$
echo "enter the number"
read n
sum=0. 0
num=1. 0
deno=2. 0
count=2
$\mathrm{y}=0.0$
while [$\$$ count -le $\$ \mathrm{n}$]
do
y=\$ (echo "\$num / \$deno" | bc -1)
printf "\%10.5f¥n" \$y
sum=` echo \$sum + \$y | bc deno=` echo \$deno $+1.0 \mid \mathrm{bc}$
num=` echo \(\$\) num \(+1.0 \mid \mathrm{bc}{ }^{`}\)
count=` echo $\$$ count $+1 \mid \mathrm{bc}$
done
echo "numerator \$num denominator \$deno"
printf "\%10.5f" \$sum
output
administrator@ubuntu: / rr\$./sumseries1. sh
enter the number
7
0.50000
0. 66667
0.75000
0. 80000
0.83333
0. 85714
answer $=4.40714$

Exercise 12: Write a shell script to calculate the net salary of an employee in a particular month considering various allowances (TA, DA, HRA) and deductions (Income tax, Providend fund) as $\mathrm{TA}=15 \%$ of basic, $\mathrm{DA}=2 \%$ of basic, $H R A=10 \%$ of basic, Income tax $=5 \%$ of basic
and providend fund $=10 \%$ of basic
program
\# program for payslip
echo "enter the name of the employee"
read name
month=\$(date +"\%h \%Y")
echo \$name, \$month
echo "enter the basic pay"
read basic
da=`echo \$basic \(¥ * 0.02 \mid\) bc \(-1`\)
hra=` echo \$basic \(¥ * 0.10 \mid\) bc \(-1^{`}\)
ta=`echo \$basic \(¥ * 0.15 \mid\) bc \(-1`\)
it=` echo \$basic \(¥ * 0.05 \mid\) bc -1`
pf=`echo \$basic \(¥ * 0.10 \mid\) bc \(-1 `\)
allow=` echo \(\$ \mathrm{da}+\) \$hra \(+\$ \mathrm{ta} \mid \mathrm{bc}-\mathrm{l}^{`}\)
ded=` echo \(\$\) it \(+\$\) pf \(\mid\) bc -1`
net=` echo \$basic + \$allow | bc -1`
gross=` echo \$net - \$ded | bc -1`
echo "payslip for the employee : \$name"
echo" basic pay is : \$basic"
echo" Allowances are
:
echo " DA is : \$da"
echo " TA is : \$ta"
echo" HRA is : \$hra"
$\begin{array}{ll}\text { echo" Deductions are } & : " \\ \text { echo" IT is } & : \$ \text { it" }\end{array}$
echo " PF is : \$pf"
echo" Net Salary is : \$net"
echo " Gross Salary is : \$gross"
output
administrator@ubuntu: ${ }^{\sim} /$ rr\$./payslip. sh
enter the name of the employee
sumi
sumi, Oct 2013
enter the basic pay

8900
payslip for the employee : sumi
basic pay is : 8900
Allowances are :

DA is
$: \quad 178.00$

TA is
: 1335.00

HRA is
: 890.00

Deductions are :

IT is : 445.00

PF is
: 890.00

Net Salary is : 11303.00
Gross Salary is
: 9968.00

Exercise 13: Write a shell script which receives two files names as arguments. Check whether the file contents are same or not. If same delete the second one.

program

\# program to compare two files and check if the content are same.
\# if same delete the second one.
first=\$1
second=\$2
$x=`$ diff $\$$ first $\$$ second ${ }^{`}$
if $[\$$? $=0]$
then
echo "both files are equal"
rm \$second
else
echo "there is difference"
echo "the difference is $\$ \mathrm{x}$ "
fi
if [-e \$second]
then
echo "file is not deleted"
else
echo "file is deleted"
fi
output :
content of test
welcome to csc
content of test4
welcome to csc
content of test2
welcome
csc
administrator@ubuntu: $\sim / r r \$$./filesame. sh test test2
there is difference
the difference is $1 \mathrm{c} 1,2$
< welcome to csc
$>$ welcome
$>$ csc
file is not deleted
administrator@ubuntu: $\sim / r r \$$./filesame. sh test test4
both files are equal
file is deleted

Exercise 14: program to accept two files and check whether both exists. if the second file exists then content of first file should be appended to it if the second file does not exists then create a new file with the contents of first file.

Program
\# Exercise 14: program to accept two files and check if they exists.
\#if the second file exists then content of fist file should be appended to it
\# if the second file does not exists then creat a new file with the contents \# of
first file.
first=\$1
second=\$2
if [-e \$first]
then
echo "first file \$first exists"
fi
if [-e \$second]
then
echo "second file \$second exists"
echo "first file is appended to the content of second"
cat \$first >> \$second
else
cat $\$$ first $>$ \$second
fi

output

administrator@ubuntu: / rr \$./fileapp. sh test test5
first file test exists
administrator@ubuntu: /rr\$./fileapp. sh test test5
first file test exists
second file test5 exists
first file is appended to the content of second

Exercise 15: a) List of all files in the current directory to which you have read, write, and execute permission.

Program

\# exercise 15: a) Evaluate the status of a file
$\mathrm{x}={ }^{\prime \prime} . / *^{\prime \prime}$
for y in $\$ x$
do
if [-f \$y]
then
if [-s \$y]
then
echo "\$y is a file and size is >0 "
fi
fi
if [-d \$y]
then
echo "\$y is a directory"
fi
if [-r \$y]
then
if [-w \$y]
then
if [-x \$y] then
echo "\$y has read, write and execute permission" else
echo "\$y has read and write permission" fi
else
echo " \$y has read permission only" fi
else
echo "\$y has no permission"
fi
done

Output
./test has read and write permission
./test2 is a file and size is >0
. /test2 has read and write permission
./test3 is a file and size is >0
. /test3 has read and write permission
./test4 is a file and size is >0
. /test4 has read and write permission
./test5 is a file and size is >0
./test5 has read and write permission
./unixoutput.odt is a file and size is >0
./unixoutput. odt has read and write permission
. /untileg1.sh is a file and size is >0
./untileg1.sh has read, write and execute permission
./whileeg1.sh is a file and size is >0
./whileeg1.sh has read, write and execute permission
./x is a directory
./x has read, write and execute permission

Exercise 15: b) Receive any number of filenames as arguments and check whether the argument supplied is a file or directory. If it is a directory it should be appropriately reported. If it is a file then name of the file as well as the number of lines present in it should be reported.

Program

\# exercise 15: a) Evaluate the status of a file
$\mathrm{x}={ }^{\prime \prime} . /$ *" $^{\prime \prime}$
for y in $\$ x$
do
if [-f \$y]
then
if [-s \$y]
then
echo "\$y is a file and size is >0 "
fi
fi
if [-d \$y]
then
echo "\$y is a directory"
fi
len=` echo \$y | wc -1c`
echo "\$y contains \$1en lines"
done

output

. /caseeg1 is a file and size is >0
./caseeg1 contains 10 lines
. /caseeg1.sh is a file and size is >0
./caseeg1.sh contains 13 lines
. /caseeg2. sh is a file and size is >0
./caseeg2.sh contains 13 lines
. /caseeg3. sh is a file and size is >0
./caseeg3. sh contains 13 lines
. /copyprg. sh is a file and size is >0
./copyprg.sh contains 13 lines
. /dateformat. sh is a file and size is >0
./dateformat. sh contains 16 lines
./ex2. sh is a file and size is >0
./ex2.sh contains $1 \quad 9$ lines

Exercise 16: Create file called Test, which contains sample data as follows:
A00001 Shanthi 80
A00007 Arun 70
S00005 Karthi 50
A00004 sunitha 90
A00002 kanimozhi 45

Answer the following questions based on the above:
a) Display the contents of the file sorted according to the marks in the descending order.
b) Display the names of the students in the alphabetical order ignoring the cases.
c) Display the list of students who have scored marks between 60 and 80
d) Display the list of students and their register number.

program

\# exercise 16
cat test
echo "displaying the contents in decending order of marks"
sort -r -k 3 test
echo "displaying the contents in ascending order of names"
sort -d -k 2 test

echo "displaying the students list who have scored between 60 \& 80 "
echo "

while read roll name mark
do
if [[\$mark -ge 70 \&\& \$mark -1e 80]]
then
echo \$roll \$name \$mark
fi
done < test

format="\%10s\%10s\%3s¥n"
echo "ALL STUDENTS AND THEIR REGISTER NUMBERS"
while read roll name mark
do

```
printf "$format" $name $roll
done < test
```



```
exit
```


output

```
outadministrator@ubuntu: /rr$ ./exer16.sh
A00001 Shanthi 80
A00007 Arun 70
S00005 Karthi 50
A00004 sunitha 90
A00002 kanimozhi 45
displaying the contents in decending order of marks
A00004 sunitha 90
A00001 Shanthi 80
A00007 Arun 70
S00005 Karthi 50
A00002 kanimozhi 45
displaying the contents in ascending order of names
A00007 Arun 70
A00002 kanimozhi 45
S00005 Karthi 50
A00001 Shanthi 80
A00004 sunitha 90
displaying the students list who have scored between 60 & 80
```

A00001 Shanthi 80
A00007 Arun 70
ALL STUDENTS AND THEIR REGISTER NUMBERS
Shanthi A00001
Arun A00007
Karthi S00005
sunitha A00004
kanimozhi A00002

