Unit 3

Stack and Subroutines

Stack

The stack is an area of RAM or main memory identified by the programmer
for temporary storage of information.
e The stackis a LIFO structure. (Last In First Out) Memory

® The stack grows backwards into memory.
® In other words, the programmer defines the
bottom of the stack and the stack grows up
into reducing address range.
® Given that the stack grows backwards into memory
It is customary to place the bottom of the stack at the The Stack

end of memory to keep it as far away from user grows
rograms as possible backwards
Prog P into memory Bottom

« of the
Stack

Stack ..

In 8085, the stack is defined by setting the SP (Stack Pointer) register
LXI SP, FFFFH
This sets the Stack Pointer to location FFFFH (end of memory for the 8085)

® The size of the stack is limited only by the available memory.
The 8085 provides two instructions : PUSH and POP for storing information on the stack and
retrieving it back. Both work with register pairs only.
e Data bytes in the register pairs of the microprocessor can be stored on the stack (two at a time) in
reverse order (decreasing memory address) by using the instruction PUSH.
e Data bytes can be transferred from the stack to respective registers using the instruction POP.
Because two data bytes are being stored at a time, the 16-bit memory address in the stack pointer
register is decremented by two; when data bytes are retrieved, the address is incremented by two.

PUSH instruction

The stack is used by both programmer and microprocessor. The programmer can use register pair to push and
pop data to and from stack. The microprocessor uses stack during subroutines to store the content of
program counter.

Instructions

Opcode Operand

LXI SP, 16-bit Accumalaior A (8)| | Flag Register

PUSH Rp B () c (8

PUSH B D (8 k. 8

PUSH D AR e

PUSH H Stack Pointer (SP) (16)

PUSH PSW Program Counter (PC) (16)-
Data Bus Address Bus

POP Rp ‘ U

Lines

POP B

POP D Bidirectional . Unidirectional

POP H

POP PSW

PUSH instruction

PUSH B (1 byte instruction)

s Decrement SP
s Copy the contents of register B to the memory location pointed to by SP
7

% Decrement SP
Copy the contents of register C to the memory location pointed to by SP

POP instruction

POPD

% Copy the contents of the memory location pointed to by the SP to register E
% Increment SP
% Copy the contents of the memory location pointed to by the SP to register D
% Increment Sp

D E
L 125 1 F |

FFFB
FFFC
FFFD
FFFE
FFFF

Operation of the Stack

e During pushing, the stack operates in a “decrement memory location then

store” style.

— The stack pointer is decremented first, then the information is placed on the

stack.

e During poping, the stack operates in a “use then increment memory location”
style.

— The information is retrieved from the top of the the stack and then the pointer is
incremented.

e The SP pointer always points to “the top of the stack”

PSW register pair

® The 8085 recognizes one additional register pair called the PSW (Program
Status Word).

— This register pair is made up of the Accumulator and the Flags registers.

® Itis possible to push the PSW onto the stack, do whatever operations are
needed, then POP it off of the stack.

— The result is that the contents of the Accumulator and the status of the
Flags are returned to what they were before the operations were execute

PUSH PSW register pair

PUSH PSW (1 Byte Instruction)
— Decrement SP

— Copy the contents of register A to the memory
location pointed to by SP

— Decrement SP

— Copy the contents of Flag register to the memory
location pointed to by SP

Flag

POP PSW register pair

POP PSW (1 Byte Instiruction)

— Copy the contents of the memory location pointed
to by the SP to Flag register

— Increment SP

— Copy the contents of the memory location pointed
to by the SP to register A

— Increment SP

LIFO

The order of PUSHs and POPs must be opposite of each other in order to retrieve
information back into its original location.

PUSH B
PUSHD
POPD
POP B

Reversing the order of the POP instructions will result in the exchange of the contents of
BC and DE.

Example 1 - PUSH

Register Contents

A {frs 1 F
Memory B K=
Location Mnemonics D E
2000 LXI SP,2099H; H 42 i —
2003 LXI H,42F2H; > SP 2099
2006 PUSH H ;Store contents of register HL. on the stack
2007 DELAY COUNTER ;The register pair HL. can be used by the Delay
Counter if necessary
200F 1 ;Load HL registers with the contents of the two
2010 POP H top locations of the stack
8085 Registers Memory
A F
B | o
D E
H 42 F2 [1. -
Sp [2097 ﬁ'> 12 2097 —-——o S|
> 42 2098
x 2099 SP
8085 Registers Memory
A I
B <
) | B8
H a2 _ F2 L < F2 2097

sSP 2099 I'———‘— a2 | 2098 *
! I X 2000 —

Example 2

2000
2003
2006
2009
200A
200B
200C
200D

201F
2020
2021

Program

LXISP, 2400H
LXIH,2150H
LXIB, 2280H
MOV A, M
PUSHH
PUSHB

PUSH PSW

POP PSW
POP H

D

SP

Register Contents

(Data) Flags
22 80
XX XX
21 50

2400

rm AT

Stack Pointer

Meoemory

Miemory

Contents Contents Address
Imitial Contents { 2300 Program 2000 1]
PUSH #H — e — —
23FE —~ — -
PUSH B -— { [23FD —— e 3 l T 20s0
7 23FC | —
POSH - PSW— { :::A:: L . -
- o CFHilags) 23FA }—-————— S
— —1- ::}:] «A> 23K B
T'(;') T (€ 2O 1 A;_‘_' ‘L—'(23
(l:) - e 4 231D
Tl S50 Z23IFE
L C¥E) —) | 23
2400 —= s
Stack contents after execution of PUSH instructions
Stack Pointer Contents
Stack After Each POP
Contents Instructions Instruction N
r 23 FA l Initial
23 FA (Flags) Location
= wW A A Flags F 23 FC
S Ban POP PS & gs_] l
23 FC 80
= POP H H 22 80 L 23 FE |
23 FD 22 } r I J E
RA I : » POP B N) [i | 2400 |

23 PR 21

Stack contents after execution of POP instructions

Problem 1

1. Clearall flags
Load OOH in the accumulator, and
demonstrate that the zero flag is not
affected by the data transfer
instruction.

3. Logically OR the accumulator with itself
to set the Zero flag, and display the flag
at PORT1 or store all the flags on the
stack 00000000 01000100 00 44

XXO00
01
02
03
04
05
06
07
08
09

OA
0B
oc
oD
OE
OF

MVI A, 00H

ORA A
PUSH PSW
HLT

;Load 00H again

10
11
12
13

\ 9 4
Set flags and reset CY and AC |2
;Save flags on stack
\End of program

16
17
18

Machine
Code

31
99
XX
2E
00
E5
Fl
3E
00
F5
El
7D
D3
PORTO
3E
00
B7
F5
1
7D
E6
40
D3
PORT
76

Modify Flag content using PUSH / POP

PROGRAM
Memory

Address Instructions

LXI SP,XX99H

MVI L,00H

PUSH H
POP PSW
MVI A,00H

PUSH PSW
POP H
MOV AL
OuUT PORTO
MVI A,00H
ORA A
PUSH PSW
POP H
MOV AL
ANI 40H
ouUT PORTI

Comments

:Initialize the stack

;Clear L

;Place (1.) on stack
:Clear flags

;Load OOH

:Save flags on stack
:Retrieve flags in L

;Display flags

;Load OOH again

;Set flags and reset CY, AC
;Save flags on stack

Retrieve flags in L.

:Mask all flags except Z

End of program

Flag bits

0100 0100
0001 0000
D7 Dg Ds Dy D3 D4 D, Dg
) Z AC P CY
A= 01000100

40H=0100 0000

0100 0000

Subroutine

A subroutine is a group of instructions separate

MAIN PROGRAM

from main program that will be called repeatedly

SUBROUTINE

in different locations of the program to perform a

1200H

function.. 78H CALL
Rather than repeat the same instructions several 79H 00
times, they can be grouped into a subroutine that

is called from the different locations 80H 12

In assembly language, a subroutine can exist 81H

anywhere in the code

However, it is customary to place subroutines

separately from the main program.

RET

100

120
121

Examplel

200

sSuhb2

call subl

next

call sub 2

next

ﬁ

The stack

The stack

The stack

(1) Jump to function:

Two things need to be done when
jumping from the invoking routine, say
MAIN, to the invoked routine, say SUB:

e Push updated PC contenton a
stack;

e Load PC with the starting address
of SUB, the address of the first
instruction in SUB.

(2) Return from function:

Pop the top item on stack, the return
address, to PC.

Example2

Stack Stack

34H 34H

e =SSP 15H 33H

otk 1 00H 32H

«SP= 10H 31H SR . bl
1 Bk SoH 00F | 30H
~SP=- 2FH oo

SUBROUTINE A SUBROUTINE B

MAIN PRG

20FAH
14FOH

OFFDH CALL 14F0 14FDH | CALL 20FAH

RET

Subroutines cont...

8085 microprocessor has two instruction for subroutines

CALL 16 bit address - to redirect program execution to the
subroutine (3 byte instruction)

RET - to return to the calling routine (one byte instruction)

CALL instruction

CALL 4000H

e 3 byte instruction, 5 machine cycles, 18 T states

® Push the address of the instruction immediately following the CALL onto
the stack and decrement the stack pointer register by two.

e Jump Unconditionally to memory location given next to CALL.

® Load the program counter with the 16-bit address supplied with the CALL

instruction.

® Microprocessor reads the subroutine address from the next two memory location and stores
the higher order 8-bit of the address in the W register and stores the lower order 8-bit of the
address in the Z register.

2000 CALLI 4000:
2003

[lojpol | [W] [Z]Register

—t
2

| e

4 000
PC | [2 oo 3]

FFFD 03
FFFE 20

SP

RET instruction

1-byte instruction, 3 machine cycle and 10 T-states

® Retrieve the return address from the top of the stack and increments stack
pointer register by two.

® Load the program counter with the return address.

e Unconditionally returns from a subroutine.

‘ -
4014 o BB

4015 RITE &5

20‘,

2000
1
2040
2041
2042
2043

I

20S5F
2070

1

207F
2080

1

2398

IL.XI SP.2400H
4
CALIL 2070H

NEXT INSTRUCTION

|

HLT

First Subroutine
Instruction
2

RET

ki

Other Subroutines

4
Empty Space
4

2000

lllustrates the exchange of information between stack
and Program Counter

Memory
Address

2042
2043

205F

Subroutine
> 2070

207F

Instruction requires five
machine cycles and
eighteen T-states: Call
instruction is fetched,
16-bit address is read
during M2 and M3 and
stored temporarily in W/Z
registers. In next two cycles
content of program
counter are stored on the
stack (address from where
microprocessor continue
the execution of program
after completion of the
subroutine.

CALL Execution

Instruction: CALL 2070n1

Memory | Code |
Address (H)
—
2040 CD
2041 70 |
2042 20 |

S
Machine P (::ft: “ Address Program Data Internal
Cycles (SP) Bus Counter Bus Registers
(AB) J(PCH)Y((PCL)} (DB) (W) (2)
2400
M,
23FF CcD
Opcode 2040 20 41 —
Fetch S Opcode
Phon. 70
emo 2041 = 70
Rcadry e Operand]
P 20
emory 23FF 2042 20 43 -1~ 20
Read = Operand [~
M4 \ \
Memory 23FE 23FF 20 43 20
Write (SP-2) L} (PCH)
My - Yy v
Mempry - 23FB 23FE 20 43 43 (20) (70)
Write | S— (PCL)
M,
Opcode Botch 2070 —-» 2071 P
of Next - 207
Instruction OV NZ) - (WXZ)

Data Transfer During the Execution of the CALL Instruction

Program execution sequence is

transferred to the memory location
2043H location.M1 is normal fetch
cycle during M2 contents of stack
pointer are placed on address bus
so 43H data is fetched and stored
on Z register and SP is upgraded.
Similarly for M3. Program
sequence is transfered t02043H by
placing contents of W/Z on address
bus.

RET Execution

Memory | Code
scosced B Dat {nternal
Stack | Address a :
i B Machine Poincter Bus | FOBTM | Bys | Registers
Cycles | oap) | (aB) [ST o) | W@
M c9
Contents of 1 i -
Opcode 23FE 20 Opeode
Stack Memory Sk
o ;3 M N 0
23FF - 1 .5
Memory 23FF 2JFE (Stack) -
Read \
M, 20 |
Memory 2400 23FF (Stack-T) - 20
Read
b 2043
2043
Fetch 2044
opf)?‘::eex: ’ (W)(2Z) (WNZ)
Instruction

Data Teansfer Durina the Execution of the RET nstruchon

Passing data to a Subroutine

® In Assembly Language data is passed to a subroutine through
registers.

e The datais stored in one of the registers by the calling program and
the subroutine uses the value from the register.

® The other possibility is to use agreed upon memory locations.

® The calling program stores the data in the memory location and the
subroutine retrieves the data from the location and uses it.

Conditional call instructions

The conditional Call and Return instructions are based on four flag conditions (Carry, Zero,

Sign and Parity)

In case of conditional call the program is transferred to the subroutine if condition is met.

In case of a conditional Return instruction, the sequence returns to the main program if the
condition is met.

Conditional Call

CC - Call subroutine if Carry flag is set (CY=1)
CNC - Call subroutine if Carry flag is reset (CY=0)
CZ - Call subroutine if Zero flag is set (Z=1)

CNZ - Call subroutine if Zero flag is reset (Z=0)
CM - Call subroutine if sign flag is set (S=1, negative number)
CP - Call subroutine if sign flag is reset (S=0, positive number)
CPE - Call subroutine if parity flag is set (P=1, even parity)
CPO - Call subroutine if parity flag is reset (P=0, odd parity)

Conditional Return instructions

Conditional Return
RC - Return if Carry flag is set (CY=1)
RNC - Return if Carry flag is reset (CY=0)
RZ - Return if Zero flag is set (Z=1)

RNZ - Return if Zero flag is reset (Z=0)
RM - Return if Sign flag is set (S=1, negative number)
RP - Return if Sign flag is reset (S=0, positive number)
RPE - Return if parity flag is set (P=1, even parity)

RPO - Return if parity flag is reset (P=0, odd parity)

RESTART instructions

In addition to the unconditional CALL and RET instructions, the 8085 instruction set
includes eight Restart instructions and eight conditional call and Return instructions.

RST instruction (3 machine cycles and , 12 T-states)

1 byte call instructions
Transfer the program execution to a specific location on page O0H
Execute the same way as CALL instructions.

Used in conjunction with interrupt.

RST 0 Call 0000H RST 4 Call 0020H
RST t Call 0008H RST 5 Call 0028H
RST 2 Call 0010H RST 6 Call 0030H
RST 3 Call 0018H RST 7 Call 0O038H

Example

Write a program that will display FF and 11 repeatedly on the seven segment display. Write a ‘delay’ subroutine and call as it
necessary

2000 ; LXISP, FFFF
2003 : MVIA, FF
2005 : OUT PORT1
2007 : CALL 2014
200A : MVIA 11
200C : OUT PORT1
200E : CALL 2014
2011 : JMP 2003

DELAY : 2014 : MVIBFF
2016 : MCICFF
2018 : DCRC
2019 : INZ 2018
201C : DCRB

201D : JNZ 2016
2020 : RET

CALL and RET

. When CALL is executed, the micro-
processor automatically stores the 16-
bit address of the instruction next to
CALL on the stack.

. When CALL is executed, the stack
pointer register is decremented by
two.

. The instruction RET transfers the con-
tents of the top two locations of the
stack to the program counter.

. When the instruction RET is exe-
cuted, the stack pointer is incremented
by two.

. In addition to the unconditional
CALL and RET instructions, there are
eight conditional CALL and RE-
TURN instructions.

Difference between CALL ,RET and PUSH,POP

PUSH and POP

. The programmer uses the instruction

PUSH to save the contents of a register
pair on the stack.

. When PUSH is executed, the stack

pointer register is decremented by
two.

. The instruction POP transfers the con-

tents of the top two locations of the
stack to the specified register pair.

. When the instruction POP is executed,

the stack pointer is incremented by
two.

. There are no conditional PUSH and

POP instructions.

