
Unit 3
Stack and Subroutines

Stack
● The stack is an area of RAM or main memory identified by the programmer

for temporary storage of information.
● The stack is a LIFO structure. (Last In First Out)
● The stack grows backwards into memory.
● In other words, the programmer defines the

bottom of the stack and the stack grows up
 into reducing address range.

● Given that the stack grows backwards into memory
It is customary to place the bottom of the stack at the
end of memory to keep it as far away from user
programs as possible

Stack ..
In 8085 , the stack is defined by setting the SP (Stack Pointer) register

LXI SP, FFFFH

This sets the Stack Pointer to location FFFFH (end of memory for the 8085)

● The size of the stack is limited only by the available memory.

● The 8085 provides two instructions : PUSH and POP for storing information on the stack and

retrieving it back. Both work with register pairs only.

● Data bytes in the register pairs of the microprocessor can be stored on the stack (two at a time) in

reverse order (decreasing memory address) by using the instruction PUSH.

● Data bytes can be transferred from the stack to respective registers using the instruction POP.

● Because two data bytes are being stored at a time, the 16-bit memory address in the stack pointer

register is decremented by two; when data bytes are retrieved, the address is incremented by two.

PUSH instruction
The stack is used by both programmer and microprocessor. The programmer can use register pair to push and
pop data to and from stack. The microprocessor uses stack during subroutines to store the content of
program counter.
Instructions
Opcode Operand
LXI SP, 16-bit
PUSH Rp

PUSH B
PUSH D
PUSH H
PUSH PSW

POP Rp

POP B
POP D
POP H
POP PSW

PUSH instruction
PUSH B (1 byte instruction)

❖ Decrement SP
❖ Copy the contents of register B to the memory location pointed to by SP
❖ Decrement SP
❖ Copy the contents of register C to the memory location pointed to by SP

POP instruction
POP D

❖ Copy the contents of the memory location pointed to by the SP to register E
❖ Increment SP
❖ Copy the contents of the memory location pointed to by the SP to register D
❖ Increment Sp

Operation of the Stack
● During pushing, the stack operates in a “decrement memory location then

store” style.

– The stack pointer is decremented first, then the information is placed on the

stack.

• During poping, the stack operates in a “use then increment memory location”

style.

– The information is retrieved from the top of the the stack and then the pointer is

incremented.

• The SP pointer always points to “the top of the stack”

PSW register pair
● The 8085 recognizes one additional register pair called the PSW (Program

Status Word).

– This register pair is made up of the Accumulator and the Flags registers.

● It is possible to push the PSW onto the stack, do whatever operations are

needed, then POP it off of the stack.

– The result is that the contents of the Accumulator and the status of the

Flags are returned to what they were before the operations were execute

PUSH PSW register pair

POP PSW register pair

LIFO
The order of PUSHs and POPs must be opposite of each other in order to retrieve

information back into its original location.

PUSH B

PUSH D

;

POP D

POP B

Reversing the order of the POP instructions will result in the exchange of the contents of

BC and DE.

Example 1 - PUSH

Example 2

Stack contents after execution of PUSH instructions

Stack contents after execution of POP instructions

Modify Flag content using PUSH / POP
Problem 1

1. Clear all flags

2. Load 00H in the accumulator, and

demonstrate that the zero flag is not

affected by the data transfer

instruction.

3. Logically OR the accumulator with itself

to set the Zero flag, and display the flag

at PORT1 or store all the flags on the

stack 00000000 01000100 00 44

Flag bits

0100 0100

0001 0000

A= 0100 0100

40H=0100 0000

 0100 0000

Subroutine
A subroutine is a group of instructions separate
from main program that will be called repeatedly
in different locations of the program to perform a
function..

Rather than repeat the same instructions several
times, they can be grouped into a subroutine that
is called from the different locations

In assembly language, a subroutine can exist
anywhere in the code

However, it is customary to place subroutines
separately from the main program.

MAIN PROGRAM

78H CALL

79H 00

80H 12

81H

200H CALL

201H 00

202H 12

1200H

RET

SUBROUTINE

(1) Jump to function:

Two things need to be done when
jumping from the invoking routine, say
MAIN, to the invoked routine, say SUB:

● Push updated PC content on a
stack;

● Load PC with the starting address
of SUB, the address of the first
instruction in SUB.

(2) Return from function:

Pop the top item on stack, the return
address, to PC.

Example1

Example2

0FFDH CALL 14F0

1000H

MAIN PRG
14FOH

14FDH CALL 20FAH

1500H

RET

SUBROUTINE A

20FAH

RET

SUBROUTINE B

Subroutines cont...
8085 microprocessor has two instruction for subroutines

CALL 16 bit address - to redirect program execution to the

subroutine (3 byte instruction)

RET - to return to the calling routine (one byte instruction)

CALL instruction
● CALL 4000H
● 3 byte instruction, 5 machine cycles, 18 T states
● Push the address of the instruction immediately following the CALL onto

the stack and decrement the stack pointer register by two.
● Jump Unconditionally to memory location given next to CALL.
● Load the program counter with the 16-bit address supplied with the CALL

instruction.
● Microprocessor reads the subroutine address from the next two memory location and stores

the higher order 8-bit of the address in the W register and stores the lower order 8-bit of the
address in the Z register.

RET instruction
● 1-byte instruction, 3 machine cycle and 10 T-states

● Retrieve the return address from the top of the stack and increments stack

pointer register by two.

● Load the program counter with the return address.

● Unconditionally returns from a subroutine.

Illustrates the exchange of information between stack
and Program Counter

CALL Execution
Instruction requires five
machine cycles and
eighteen T-states: Call
instruction is fetched,
16-bit address is read
during M2 and M3 and
stored temporarily in W/Z
registers. In next two cycles
content of program
counter are stored on the
stack (address from where
microprocessor continue
the execution of program
after completion of the
subroutine.

RET Execution
Program execution sequence is

transferred to the memory location

2043H location.M1 is normal fetch

cycle during M2 contents of stack

pointer are placed on address bus

so 43H data is fetched and stored

on Z register and SP is upgraded.

Similarly for M3. Program

sequence is transfered to2043H by

placing contents of W/Z on address

bus.

Passing data to a Subroutine
● In Assembly Language data is passed to a subroutine through

registers.

● The data is stored in one of the registers by the calling program and

the subroutine uses the value from the register.

● The other possibility is to use agreed upon memory locations.

● The calling program stores the data in the memory location and the

subroutine retrieves the data from the location and uses it.

Conditional call instructions
The conditional Call and Return instructions are based on four flag conditions (Carry , Zero,

Sign and Parity)

In case of conditional call the program is transferred to the subroutine if condition is met.

In case of a conditional Return instruction, the sequence returns to the main program if the

condition is met.

Conditional Call

CC - Call subroutine if Carry flag is set (CY=1)
CNC - Call subroutine if Carry flag is reset (CY=0)
CZ - Call subroutine if Zero flag is set (Z=1)
CNZ - Call subroutine if Zero flag is reset (Z=0)
CM - Call subroutine if sign flag is set (S=1 , negative number)
CP - Call subroutine if sign flag is reset (S=0 , positive number)
CPE - Call subroutine if parity flag is set (P=1 , even parity)
CPO - Call subroutine if parity flag is reset (P=0 , odd parity)

Conditional Return instructions
Conditional Return

RC - Return if Carry flag is set (CY=1)

RNC - Return if Carry flag is reset (CY=0)

RZ - Return if Zero flag is set (Z=1)

RNZ - Return if Zero flag is reset (Z=0)

RM - Return if Sign flag is set (S=1, negative number)

RP - Return if Sign flag is reset (S=0, positive number)

RPE - Return if parity flag is set (P=1, even parity)

RPO - Return if parity flag is reset (P=0, odd parity)

RESTART instructions
In addition to the unconditional CALL and RET instructions, the 8085 instruction set

includes eight Restart instructions and eight conditional call and Return instructions.

RST instruction (3 machine cycles and , 12 T-states)

● 1 byte call instructions

● Transfer the program execution to a specific location on page 00H

● Execute the same way as CALL instructions.

● Used in conjunction with interrupt.

Example
Write a program that will display FF and 11 repeatedly on the seven segment display. Write a ‘delay’ subroutine and call as it
necessary

2000 ; LXI SP, FFFF
2003 : MVI A, FF
2005 : OUT PORT1
2007 : CALL 2014
200A : MVI A, 11
200C : OUT PORT1
200E : CALL 2014
2011 : JMP 2003

DELAY : 2014 : MVI B FF
 2016 : MCI C FF
 2018 : DCR C
 2019 : JNZ 2018
 201C : DCR B
 201D : JNZ 2016
 2020 : RET

Difference between CALL ,RET and PUSH,POP

