[bookmark: _GoBack]Synchronization in Java
Threads can communicate among themselves with the help of inter-thread communication methods. They are :
sleep()- causes a running thread to go into the blocked(i.e not-runnable) state. When the time specified as the argument of sleep() method is elapsed, the blocked thread will return to the runnable state.
suspend()- this method causes a running thread to go into the blocked(i.e not-runnable) state and remain in that state until further orders. When the resume() method is executed, the blocked thread will return to the runnable state.
wait()- this method causes a running thread to go into the blocked(i.e not-runnable) state and remain in that state until a specified condition occurs. When the notify() method is executed, the blocked thread will return to the runnable state.
To block a thread use any of the three methods
sleep()
suspend()
wait()
To revoke a blocked method
resume()
notify()

	class ItemQ
{
int n;
synchronized intget()
{
System.out.println("Got: "+n);
return n;
}

synchronized void put(int n)
{
this.n=n;
System.out.println("Put: "+n);
}
}

class Producer extends Thread
{
ItemQ q;
Producer(ItemQ q1)
{
this.q=q1;
}
public void run()
{
inti=0;
while(true)
{
try
{
q.put(i++);

}
catch(Exception e)
{}
}
}
}

class Consumer extends Thread
{
ItemQ q;
Consumer(ItemQ q1)
{
this.q=q1;
 }
public void run()
{
while(true)
{
try
{
q.get();

}
catch(Exception e)
{}
} //while
} //run
}
class producer_consumer4
{
public static void main(String args[])
{
ItemQ q=new ItemQ();
Producer p1=new Producer(q);
Consumer c1=new Consumer(q);
p1.start();
c1.start();
System.out.println("Press control-C to stop");
}
}

	Put: 1
Got: 1
Got: 1
Got: 1
Got: 1
Got: 1
Put: 2
Put: 3
Put: 4
Put: 5
Put: 6
Put: 7
Got: 7

Although the put()and get() methods on Q are synchronized, nothing stops the producer
from overrunning the consumer, nor will anything stop the consumer from consuming the
same queue value twice. Thus, you get the erroneous output shown here (the exact output
will vary with processor speed and task load):
As you can see, after the producer put 1, the consumer started and got the same 1 five times
in a row. Then, the producer resumed and produced 2 through 7 without letting the consumer
have a chance to consume them.
The proper way to write this program in Java is to use wait()and notify() to signal in
both directions, as shown here:
	//producer consumer with wait() and notify()
class ItemQ
{
int n;
boolean flag=false;

synchronized intremove()
{
if(!flag)
{
try
{
wait();
}
catch(InterruptedException e)
{
System.out.println("Interrupted Exception caught");
} //catch
} //if
System.out.println("item removed: "+n);
flag=false;
notify();
return n;
} //remove

synchronized void add(int n)
{
if(flag)
{
try
{
wait();
}
catch(InterruptedException e)
{
System.out.println("Interrupted Exception caught");
}
}
this.n=n;
flag=true;
System.out.println("item added: "+n);
notify();
} //add

} // ItemQ

class Producer extends Thread
{
ItemQ q;
Producer(ItemQ q1)
{
this.q=q1;
}
public void run()
{
inti=0;
while(true)
{
q.add(i++);
} //while
} //run
} //Producer

class Consumer extends Thread
{
ItemQ q;
Consumer(ItemQ q1)
{
this.q=q1;
 }
public void run()
{
while(true)
{
q.remove();
} //while
} //run
} //Consumer
class producer_consumer5
{
public static void main(String args[])
{
ItemQ q=new ItemQ();
Producer p1=new Producer(q);
Consumer c1=new Consumer(q);
p1.start();
c1.start();
System.out.println("Press control-C to stop");
}
}

Inside remove(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside remove()resumes.
After the data has been obtained, remove()calls notify(). This tells Producer that it is okay to
put more data in the queue. Inside add(), wait() suspends execution until the Consumer
has removed the item from the queue. When execution resumes, the next item of data is put
in the queue, and notify()is called. This tells the Consumer that it should now remove it.
Here is some output from this program, which shows the clean synchronous behavior:
	E:\javaprgs\thread>java -cp . producer_consumer5
Press control-C to stop
item added: 0
item removed: 0
item added: 1
item removed: 1
item added: 2
item removed: 2
item added: 3
item removed: 3
item added: 4
item removed: 4
item added: 5
item removed: 5
item added: 6
item removed: 6
item added: 7
item removed: 7
item added: 8
item removed: 8
item added: 9
item removed: 9
item added: 10
item removed: 10
item added: 11
item removed: 11

Another example for inter-thread communication
	class Chat
{
boolean flag=false;

public synchronized void Answer(String msg)
{
if(!flag)
{
try
{
wait();
} //try
catch(InterruptedException e)
{
System.out.println("error is "+e);
} //catch
} //if
System.out.println(msg);
flag=false;
notify();
}//Answer

public synchronized void Question(String msg)
{
if(flag)
{
try
{
wait();
} //try
catch(InterruptedException e)
{
System.out.println("error is "+e);
} //catch
} //if
System.out.println(msg);
flag=true;
notify();
}//Question

}//Chat

class T1 implements Runnable
{
Chat m;
String[] s1={"hi","how are you?","i am also doing fine"};
public T1(Chat m1)
{
this.m=m1;
new Thread(this,"Question").start();
}
public void run()
{
for(inti=0;i<s1.length;i++)
m.Question(s1[i]);
} //run
} //T1

class T2 implements Runnable
{
Chat m;
String[] s2={"hi","I am good, what about you","Great"};
public T2(Chat m1)
{
this.m=m1;
new Thread(this,"Answer").start();
}
public void run()
{
for(inti=0;i<s2.length;i++)
m.Answer(s2[i]);
} //run
} //T2

public class producer_consumer6
{
public static void main(String args[])
{
Chat m=new Chat();
new T1(m);
new T2(m);
}
}

Output
	:\javaprgs\thread>javac producer_consumer6.java

E:\javaprgs\thread>java -cp . producer_consumer6
hi
hi
how are you?
I am good, what about you
i am also doing fine
Great

Suspending , resuming and stopping of threads
Understandings suspend, resume, and stop methods in java thread
· step() method in Thread – This method terminates the thread execution. Once a thread is stopped, it cannot be restarted with the start() method, because stop() method terminates the execution of a thread.
· suspend() method in Thread – If you want to stop the thread execution and start it again when a certain event occurs. In this case, suspend() method allows a thread to temporarily cease execution.
· resume() method in Thread – resume() method works with suspend() method. Resume() method allows the suspended thread to start again.

	//program for suspending, resuming and stopping threads
class newThread implements Runnable
{
String name;
Thread t;
newThread(String tname)
{
 name=tname;
t=new Thread(this,name);
System.out.println("New thread: "+t);
t.start();
}

public void run()
{
try
{
for(int i=15;i>0;i--)
{
System.out.println(name + ": "+i);
Thread.sleep(200);
}
}
catch(InterruptedException e)
{
System.out.println(name+" interrupted");
} //catch
System.out.println(name+ "exiting");
}
}

class suspendresume
{
public static void main(String args[])
{
newThread ob1=new newThread("one");
newThread ob2=new newThread("two");
try
{
 Thread.sleep(1000);
 ob1.t.suspend();
 System.out.println("Suspending thread one");
 Thread.sleep(1000);
 ob1.t.resume();
 System.out.println("Resuming thread one");
 ob2.t.suspend();
 System.out.println("Suspending thread two");
 Thread.sleep(1000);
 ob2.t.resume();
 System.out.println("Resuming thread two");
}
catch(InterruptedException e)
{
System.out.println("Main thread interrupted");
}
try
{
System.out.println("waiting for threads to finish");
ob1.t.join();
ob2.t.join();
}
catch(InterruptedException e)
{
 System.out.println("Main thread interrupted");
}
System.out.println("Main thread exiting");
}
}

Output
	E:\javaprgs\threads>java suspendresume
New thread: Thread[one,5,main]
New thread: Thread[two,5,main]
one: 15
two: 15
one: 14
two: 14
one: 13
two: 13
one: 12
two: 12
one: 11
two: 11
Suspending thread one
two: 10
two: 9
two: 8
two: 7
two: 6
Resuming thread one
Suspending thread two
one: 10
one: 9
one: 8
one: 7
one: 6
Resuming thread two
waiting for threads to finish
two: 5
one: 5
two: 4
one: 4
two: 3
one: 3
two: 2
one: 2
two: 1
one: 1
twoexiting
oneexiting
Main thread exiting

In this program a newThread class which implements Runnable interface is created. It has a constructor which assigns value for thread name is created. This is responsible for starting the thread. run() method is created which runs the created thread. In this the name of the thread along with the value given in for loop is printed. A sleep() method is called which delay the for loop for 200 milliseconds.
In the main program two objects say ob1 and ob2 for the class newThread is created. Now the two threads started running. In the main program sleep() method is called with 1000 milliseconds. At this time the newThread ob1 method and ob2 method runs (two threads) printing the name of thread with a uniform interval of 200 milliseconds. After 1000 millisecond the ob1 is suspended and main thread again sleeps for 1000 milliseconds. At this time the ob2 runs. After this ob1 is resumed and it starts running. Now ob2 is suspended and again main thread sleeps for 1000 milliseconds. Now ob1 is resumed and so on
Example for stopping thread
	import java.util.Date;
 class counterThread implements Runnable
{
private int counter=0;
public void run()
{
for(int i=0;i<10;i++)
{
counter++;
System.out.println("counter is : "+counter+" -- current time is : "+ new Date());
try
{
 Thread.sleep(500);
 if(counter ==5)
{
Thread.currentThread().stop();
} //if
} //try
catch(InterruptedException e)
{
 System.out.println(e);
} //catch
} //for
} //run
public int getCounter()
{
return counter;
}
} //class counterThread

//main prgoram
public class counterdemo
{
 public static void main(String args[])
{
 counterThread counter=new counterThread();
 Thread t1=new Thread(counter);
 t1.start();
 for(int i=0;i<10;i++)
 {
 try
{
 System.out.println("Main thread: "+i);
 Thread.sleep(1000);
 if(i==5)
 {
 t1.resume();
 }
} //try
catch(Exception e)
{
 System.out.println(e);
} //catch
} //for

}

}

Output
	E:\javaprgs\threads>java counterdemo
Main thread: 0
counter is : 1 -- current time is : Fri Feb 23 10:21:23 IST 2018
counter is : 2 -- current time is : Fri Feb 23 10:21:23 IST 2018
Main thread: 1
counter is : 3 -- current time is : Fri Feb 23 10:21:24 IST 2018
counter is : 4 -- current time is : Fri Feb 23 10:21:24 IST 2018
Main thread: 2
counter is : 5 -- current time is : Fri Feb 23 10:21:25 IST 2018
Main thread: 3
Main thread: 4
Main thread: 5
Main thread: 6
Main thread: 7
Main thread: 8
Main thread: 9

In the above program when the value of i inside for loop reaches the thread is stopped. Till that the main and child thread are running. After stopping of child thread only the main thread runs. This cannot be resumed as it is stopped. Even resume is given it won’t work.
In the below program it shows that when a thread is suspended it can be resumed.

	import java.util.Date;
 class counterThread implements Runnable
{
private int counter=0;
public void run()
{
for(int i=0;i<10;i++)
{
counter++;
System.out.println("counter is : "+counter+" -- current time is : "+ new Date());
try
{
 Thread.sleep(500);
 if(counter ==5)
{
Thread.currentThread().suspend();
} //if
} //try
catch(InterruptedException e)
{
 System.out.println(e);
} //catch
} //for
} //run
public int getCounter()
{
return counter;
}
} //class counterThread

//main prgoram
public class counterdemo1
{
 public static void main(String args[])
{
 counterThread counter=new counterThread();
 Thread t1=new Thread(counter);
 t1.start();
 for(int i=0;i<10;i++)
 {
 try
{
 System.out.println("Main thread: "+i);
 Thread.sleep(1000);
 if(i==5)
 {
 t1.resume();
 }
} //try
catch(Exception e)
{
 System.out.println(e);
} //catch
} //for

}

}

	E:\javaprgs\threads>java counterdemo1
Main thread: 0
counter is : 1 -- current time is : Fri Feb 23 10:27:05 IST 2018
counter is : 2 -- current time is : Fri Feb 23 10:27:05 IST 2018
Main thread: 1
counter is : 3 -- current time is : Fri Feb 23 10:27:06 IST 2018
counter is : 4 -- current time is : Fri Feb 23 10:27:06 IST 2018
Main thread: 2
counter is : 5 -- current time is : Fri Feb 23 10:27:07 IST 2018
Main thread: 3
Main thread: 4
Main thread: 5
Main thread: 6
counter is : 6 -- current time is : Fri Feb 23 10:27:11 IST 2018
counter is : 7 -- current time is : Fri Feb 23 10:27:11 IST 2018
Main thread: 7
counter is : 8 -- current time is : Fri Feb 23 10:27:12 IST 2018
counter is : 9 -- current time is : Fri Feb 23 10:27:12 IST 2018
Main thread: 8
counter is : 10 -- current time is : Fri Feb 23 10:27:13 IST 2018
Main thread: 9

Deadlock
Deadlock
A special type of error that you need to avoid that relates specifically to multitasking is
deadlock, which occurs when two threads have a circular dependency on a pair of synchronized
objects. For example, suppose one thread enters the monitor on object X and another thread
enters the monitor on object Y. If the thread in X tries to call any synchronized method on Y,
it will block as expected. However, if the thread in Y, in turn, tries to call any synchronized
method on X, the thread waits forever, because to access X, it would have to release its own
lock on Y so that the first thread could complete. Deadlock is a difficult error to debug for
two reasons:
• In general, it occurs only rarely, when the two threads time-slice in just the right way.
• It may involve more than two threads and two synchronized objects. (That is, deadlock
can occur through a more convoluted sequence of events than just described.)
	public class testdeadlock1
{
public static void main(String args[])
{
String resource1="I year";
String resource2="II year";
Thread t1=new Thread()
{
public void run()
{
synchronized(resource1)
{
System.out.println("Thread1: locked resource1 "+resource1);
try
{
Thread.sleep(100);
}
catch(Exception e)
{
System.out.println("exception occured is "+e);
}
synchronized(resource2)
{
System.out.println("Thread1: locked resource2 "+resource2);
}
}
} //run
}; //thread t1

Thread t2=new Thread()
{
public void run()
{
synchronized(resource2)
{
System.out.println("Thread2: locked resource2 "+resource2);
try
{
Thread.sleep(100);
}
catch(Exception e)
{
System.out.println("exception occured is "+e);
}
synchronized(resource1)
{
System.out.println("Thread2: locked resource1 " + resource1);
}
}
} //run
}; //thread t2

t1.start();
t2.start();
}
}

Output
	E:\javaprgs\thread>java -cp . testdeadlock1
Thread1: locked resource1 I year
Thread2: locked resource2 II year

