
UNIT 3
Counters and time delays

Need for counter and Time delays

❖ Counters are used primarily to keep track of events
❖ Time delays are important in setting up reasonably accurate timing between

two events
❖ The process of designing counters and time delays using software

instructions is far more flexible and less time consuming than the design
process using hardware

Counters
❖ The programming technique used to instruct the microprocessor to repeat

tasks is called looping. A loop can be set up to change the sequence of
execution and perform the task again.

❖ Loops can be classified into two groups:
➢ Continuous loop - repeats a task continuously
➢ Conditional loop - repeats a task until certain data conditions are met

❖ Continuous loop - a program with a continuous loop does not stop
repeating until the system is reset

❖

Counters
Conditional loop

A conditional loop is set up by the conditional jump instructions. These
instructions check flags (zero, carry etc) and repeat the specified tasks if the
conditions are satisfied. These includes counting and indexing .

❖ A loop counter is set up by loading a register with certain value.
❖ Then using the DCR (to decrement) or the INR(increment) the contents of the

register are updated
❖ A loop is set up with a conditional jump instruction that loops back or not

depending on whether the count has reached the termination count.

Counters
The operation of a loop counter can be described using the following flowchart.

Initialize

Body of the loop

Update the count

Is this
final
count?

yes

No

Loop counter can be setup
with a
● single register,
● register pair or
● loop within loop.

Time delay
Load delay register

Body of loop

Is this
final
count?

● The procedure used to design a specific delay is
similar to that used to set up a counter.

● A register is loaded with a number, depending on
the time delay required, and then the register is
decremented until it reaches zero by setting up a
loop with a conditional jump instruction.

● The loop causes the delay, depending upon the
clock period of the system.

Calculating Time Delays
Each instruction passes through different combinations of the following cycles

● Opcode Fetch,
● Memory Read
● Memory write

Knowing the combinations of cycles, one can calculate how long such an
instruction would require to complete.

● Number of Bytes
● Number of Machine cycles
● Number of T-State.

Calculating Time Delays
The time delay can be calculated as:

Time Delay = No.of T-States * Clock Period

For example

MVI B, 45H is a two byte instruction.

The hexcode is 06 45H

In the above code

 06 is Opcode fetch (one Machine cycle- 4T states)

45H (one machine cycle - 3T states)

So the total time is (4T+3T=7T states)

If one T state time = 0.5

Therefore for 7T states= 7 * 0.5 = 3.5

Time delay
Time Delay can be designed using the following technique:

1. Using one register
2. Using the register pair
3. Using a loop with in a loop

Using a single register
Consider the following loop In C++

c=15;
do
{
c=c-1;
}while (c>0)

● The first instruction initializes the loop counter C and is executed only once
requiring only 7T-States

● The following two instructions form a loop that requires 14 T-states to execute
and is repeated 255 times until C becomes 0

● To calculate the delay, we use the following formula:
● Tdelay = To + TL

 MVI C, FFH 7 T-states

LOOP DCR C 4 T-states

 JNZ LOOP 10/7T-states

Using a single register

● To calculate the delay, we use the following formula:
 Tdelay = To + TL

Tdelay = total delay
To = delay outside the loop
TL = delay of the loop
To = is the sum of all delays outside the loop
TL = is calculated using the formula
 TL = T * loop T-States * N (no. of iterations)

 MVI C, FFH 7 T-states

LOOP DCR C 4 T-states

 JNZ LOOP 10/7 T-states

Using one register
Using these formulas, we can calculate the time delay for the previous example:

To= 7 T-States

TL= (14 * 255) - 3 = 3567 T-States

(14 T-states for the 2 instructions repeated 255 times)

(FF=255) reduced by the 3 T-States for the final JNZ) (jumping and changing of
sequence requires 10 T states whereas final JUMP jumps to the next instruction
following it. So this requires only 7T states

Tdelay=[(To + TL)/f] assume (f=2 MHz)

 = (7 + 3567)/2 MHz

 = (3574) x 0.5

 = 1.787

Using a Register Pair as a Loop Counter
Using a single register, one can repeat a loop for a maximum count of 255 times

This count can be increased by using register pair for the loop counter instead of single register. A minor problem
arises in how to test for the final count since DCX and INX do not modify the flags.–However, if the loop is looking for
when the count becomes zero, we can use a small trick by Oringthe two registers in the pair and then checking the
zero flag.

Example

 LXI B, 2384H 10 T-States

LOOP DCX B 6 T-States

 MOV A, C 4 T-States

 ORA B 4 T-States

 JNZ LOOP 10 T-States

To = 10 T-States (delay for the LXI
instructions)
2384H= 2 x (16)3+3 x (16)2+8 x (16)1+4 x (16)0

 = 909210
Clock period= 0.5
TL = (0.5 x24 x 9092) = 109 ms
(24 T-States for the 4 instructions in the loop
repeated 9092 times reduced by the 3 T-States
for the JNZ in the last iteration)
Tdelay =109ms+ To

0010 0011 1000 0100
A= 1000 0011 0000 0000
B= 0010 0011 0000 0000
-------------------- --------------------
 1010 0011 0000 0000

Nested loops

Nested loops can be set using two registers as two
loop counters and updating the right register in the
respective loop.
Example
 MVI B, 38H 7T
LOOP2: MVI C, FFH 7T
LOOP1: DCR C 4T
 JNZ LOOP1 10 / 7 T
 DCR B 4T
 JNZ LOOP2 10/ 7 T
Delay calculation
LOOP1 delay TL1= 1783.5
LOOP2 delay TL2 = 56(TL1 + 21 T-states x 0.5)
 = 56(1783.5 + 10.5)
 = 100.46 ms

Loops in C++
for(i=0;i<n;i++)
{
 for(j=0;j<n;j++)
 {
 ;
 }
}

Increasing the delay
❖ The delay can be increased by using register pair

for each loop counter in the nested loop setup
❖ It can also be increased by adding dummy

instructions (like NOP= 4T state) in the body of the
loop

Disadvantages of time delay

The disadvantage of using software delay is

1. The accuracy of time delay depends on system’s clock
2. The microprocessor is occupied simply in a waiting loop.other wise it could

perform other functions
3. The task of calculating accurate time delay is tedious

Hexadecimal counter
Problem statement: write a program to count continuously in hexadecimal from
FFH to 00H in a system with a 0.5 . Use register C to set up a one
millisecod (ms) delay between each count and display the numbers at one of the
output ports

B register

FF
FE
FD
;
00

Delay calculation of hexa decimal counter

14010 = 8CH must be loaded in C register to obtain 1ms delay

Zero to nine (Modulo TEN) counter
Problem statement : Write a program to count from 0
to 9 with a one-second delay between each count.at
the count of 9, the counter should reset itself to 0 and
repeat the sequence continuously. Use register pair
HL, to set up the delay, and display each count at one
of the output ports. The clock freq is 1 MHz.

Instructions in this program

LXI : Load Register Pair immediate

DCX : Decrement Register Pair

INX : Increment Register Pair

Delay calculations

Logic operations - Rotate

RLC : Rotate Accumulator Left
RAL : Rotate Accumulator Left through carry
RRC : Rotate Accumulator Right
RAR : Rotate Accumulator Right through carry

RLC - Rotate Accumulator Left
 Each bit is shifted to next bit in left position. Bit D7 becomes D0
 CY flag is modified according to bit D7
Assume the A= AAH and CY=0. illustrate the accumulator contents after the execution of RLC

Logic operations - Rotate - RAL
RAL - Rotate Accumulator Left Through Carry (9 bit rotation)

Each bit is shifted to the adjacent left position.Bit D7 becomes the carry bit and the carry bit is

shifted into D0

The carry flag is modified according to D7

Logical operations - Rotate - RRC
RRC - Rotate Accumulator Right

 Each bit is shifted to right to the adjacent position. Bit D0 becomes D7
 CY flag is modified according to bit D0
Assume the contents of A= 81H and CY=0

Logical operations - Rotate - RAR
RRC - Rotate Accumulator Right along with carry

 Each bit is shifted to right to the adjacent position. Bit D0 becomes the carry bit, and the carry bit is
shifted into D7
 CY flag is modified according to bit D0
Assume the contents of A= 81H and CY=0

Generating pulse waveforms
Problem statement : write a
program to generate a
continuous square wave with the
period of 500 . Assume the
system clock period is 325 ns,
and use bit D0 to output the
square wave. The instructions
used in this program.

Mov A,D 4T
RLC 4T
MOV D,A 4T
ANI,01 7T
Out 10T
MVI 7T
JMP rotate 10T

 46 T

Generating pulse waveforms

Delay calculations

