UNIT 3
Counters and time delays

Need for counter and Time delays

% Counters are used primarily to keep track of events

% Time delays are important in setting up reasonably accurate timing between
two events

% The process of designing counters and time delays using software

instructions is far more flexible and less time consuming than the design

process using hardware

Counters

The programming technique used to instruct the microprocessor to repeat
tasks is called looping. A loop can be set up to change the sequence of
execution and perform the task again.

Loops can be classified into two groups:

> Continuous loop - repeats a task continuously
> Conditional loop - repeats a task until certain data conditions are met

Continuous loop - a program with a continuous loop does not stop
repeating until the system is reset

(s 2
B

Perform
Task

y
Go Back

and
Repeat

X/ X/
L XA X

X/
L X4

Counters
Conditional loop

A conditional loop is set up by the conditional jump instructions. These
instructions check flags (zero, carry etc) and repeat the specified tasks if the
conditions are satisfied. These includes counting and indexing .

A loop counter is set up by loading a register with certain value.

Then using the DCR (to decrement) or the INR(increment) the contents of the
register are updated

A loop is set up with a conditional jump instruction that loops back or not
depending on whether the count has reached the termination count.

Counters

The operation of a loop counter can be described using the following flowchart.

Initialize
Loop counter can be setup
v with a
Body of the loop e single register,
j e register pair or

e |oop within loop.

Update the count

No Is this

final
count?

Time delay

Load delay register

e The procedure used to design a specific delay is

L — similar to that used to set up a counter.

Body of loop e Aregisteris loaded with a number, depending on
the time delay required, and then the register is
decremented until it reaches zero by setting up a
loop with a conditional jump instruction.

e The loop causes the delay, depending upon the
clock period of the system.

Calculating Time Delays

Each instruction passes through different combinations of the following cycles

e Opcode Fetch,
e Memory Read
e Memory write

Knowing the combinations of cycles, one can calculate how long such an
instruction would require to complete.

e Number of Bytes
e Number of Machine cycles
e Number of T-State.

Calculating Time Delays

The time delay can be calculated as:

Time Delay = No.of T-States * Clock Period

For example

MVI B, 45H is a two byte instruction.

The hexcode is 06 45H

In the above code

06 is Opcode fetch (one Machine cycle- 4T states)
45H (one machine cycle - 3T states)

So the total time is (4T+3T=7T states)

If one T state time =0.5 MS

Therefore for 7T states=7*0.5=3.5 pus

Time delay

Time Delay can be designed using the following technique:

1. Using one register
2. Using the register pair
3. Using a loop with in a loop

Using a single register

Consider the following loop In C++

MVI C, FFH 7 T-states

c=15;

do LOOP DCR C 4 T-states
{

c=c-1; JNZ LOOP 10/7T-states
Wwhile (c>0)

e The first instruction initializes the loop counter C and is executed only once
requiring only 7T-States

e The following two instructions form a loop that requires 14 T-states to execute
and is repeated 255 times until C becomes 0

e To calculate the delay, we use the following formula:

o T =T + T

delay 0 L

Using a single register

MVI C, FFH [/ T-states
LOOP DCR C 4 T-states
JNZ LOOP 10/7 T-states

e To calculate the delay, we use the following formula:
Toy =T, * T
elay 0 L
T oy = total delay
y .

L = delay outside the loop

T = delay of the loop

To = is the sum of all delays outside the loop
T, =is calculated using the formula

L T, =T *loop T-States * N (no. of iterations)

Using one register

Using these formulas, we can calculate the time delay for the previous example:
To= 7 T-States

TL= (14 * 255) - 3 = 3567 T-States

(14 T-states for the 2 instructions repeated 255 times)

(FF=255) reduced by the 3 T-States for the final JNZ) (jumping and changing of
sequence requires 10 T states whereas final JUMP jumps to the next instruction
following it. So this requires only 7T states

T ey =[(To + TLA] assume (f=2 MHz)
= (7 + 3567)/2 MHz
=(3574)x 0.5 ns
=1.787 Ms

Using a Register Pair as a Loop Counter

Using a single register, one can repeat a loop for a maximum count of 255 times

This count can be increased by using register pair for the loop counter instead of single register. A minor problem
arises in how to test for the final count since DCX and INX do not modify the flags.—However, if the loop is looking for
when the count becomes zero, we can use a small trick by Oringthe two registers in the pair and then checking the

zero flag.

Example
LXI B, 2384H
LOOP DCX B
MOV A, C
ORAB

JNZ LOOP

0010 0011 1000 0100
A= 1000 0011 0000 0000
B= 0010 0011 0000 0000
1010 0011 0000 0000
10 T-States To =10 T-States (delay for the LXI
instructions)
6 T-States 2384H= 2 x (16)%*+3 x (16)?+8 x (16)'+4 x (16)°
= 9092,
4 T-States Clock period= 0.5 5
T, =(0.5x24 x9092) =109 ms
4 T-States (24 T-States for the 4 instructions in the loop
repeated 9092 times reduced by the 3 T-States
10 T-States for the JNZ in the last iteration)

Tdelay =109ms+ To

Nested loops

| nitialize lcop 2 |

. |

Nested loops can be set using two registers as two
loop counters and updating the right register in the

respective loop.
Example

MVI B,38H 7T
LOOP2: MVI C,FFH 7T
LOOP1: DCR C 4T

JNZ LOOP1 10/7T

DCR B 4T
JNZ LOOP2 10/7T
Delay calculation

LOOP1 delay T ,=1783.5 I

Loops in C++
for(i=0;i<n;i++)

{

for(j=0;j<n;j++)
{.
},

}

LOOP2 delay T ,=56(T , +21T-states x0.5 [is)
56(1783.5 + 10.5] s

= 100.46 ms

-

| Boay of Icop 2

I Initialize lcop 1 I
. |

e
| Boay orficop 1 |

[Upaate the count1]

Yes
[Upaate the count 3

Increasing the delay

N/

 The delay can be increased by using register pair
for each loop counter in the nested loop setup

% It can also be increased by adding dummy

instructions (like NOP= 4T state) in the body of the

loop

Disadvantages of time delay

The disadvantage of using software delay is

1. The accuracy of time delay depends on system’s clock

2. The microprocessor is occupied simply in a waiting loop.other wise it could
perform other functions

3. The task of calculating accurate time delay is tedious

Hexadecimal counter

Problem statement: write a program to count continuously in hexadecimal from
FFH to OOH in a system witha 0.5 s . Use register C to set up a one
millisecod (ms) delay between each count and display the numbers at one of the

Outp Ut pO rtS H Comments and Register Status
Memory ex Flowchart -
Address Code Label Mnemonics First Cycle
HI-1L.O PR
Initialize B B | oo | | K=
XX00 06 MVI B,00H as a Counter
et
01 00
D . t = I i l l =
. 02 05 NEXT: DCR B Sy
B register -
Y B[FF [80 |Jc
Load Register
03 OE MVI C.COUNT C with Delay
Count (C) = C
FF 04 XX 0 = ol
FE Decrement
05 oD DELAY: DCR C Delay Count B ' FF l ©)+*0 C

FD

, o A Z=1 | F
00 06 c2 INZ DELAY - B FF 00 e
07 05

08 XX Yes A FF Z=1 F

09 78 MOV A.B - = o
0A D3 OUT PORT#H [l)lsplay'Ou(pul l B FF C
oB PORT# - as (A) —» Output Port
oc c3 JMP NEXT ("’(_.'()‘:"':c’“ Return to Memory

oD 02 Location XX02H

OE XX

Delay calculation of hexa decimal counter

Delay Calculations The delay loop includes two instructions: DCR C and JNZ with 14
T-states. Therefore, the time delay T, in the loop (without accounting for the fact that
JNZ. requires seven T-states in the last cycle) is

T, = 14 T-states < T (Clock period) > Count
= 14 x (0.5 x 107®) x Count
= (7.0 x 107°) x Count

The delay outside the loop includes the following instructions:

DCR B 4T Delay outside

MVI C.COUNT 7T the loop: T = 35 T-states X T
MOV A.B 4T =35 3 (0:8 x 167
OuUT PORT 10T = 17.5 us

JMP 10T

35 T-states

Total Time Delay Tp = To + TL
1l ms = 17.5 % 107° + (7.0 x 107°) x Count
1 X 107 —17.5 % 10°°

Clonnt se =2 20 = 2 a2 = 140
7.0 x 10°° ot

140,,=8C,, must be loaded in C register to obtain 1ms delay

Zero to nine (Modulo TEN) counter

. ; Memory Hex Comments
Problem statement : Write a program to count from 0 Address Code Label Moemsonics T aad Wty

to 9 with a one-second delay between each countat .~
the count of 9, the counter should reset itself to 0 and XX00

repeat the sequence continuously. Use register pair v
HL, to set up the delay, and display each count at one 8; gg START: MVI B,00H | Initialize Counter B
- b/
of the output ports. The clock freq is 1 MHz. 03 D3 DSPLAY: OUT PORT# 10 [Dispiay Output]
04 PORT# }10 v
Instructions in this program 05 21 LXI H,16-Bit 10 | Load Delay Register |
06 LO* —————%
_ o . 07 HI
LXI : Load Register Pair immediate 08 2B LOOP: DCX H 6 o Decrement
09 7D MOV A,L 4 Delay Register
- _ 0A B4 ORA H 4 T : + Set Flags to
DCX : Decrement Register Pair 2,';' Check Delay Count
T-states
INX : Increment Register Pair
OB 2 JNZ LOOP 10/7 Is [)f:lay
Register
oc 08 =07
oD XXt
YES
OE 04 INR B 4 | Next Count |
OF 78 MOV A,B 4
10 FE CPI 0AH 7 T
11 0A b
NO
12 Cc2 JNZ DSPLAY 10/7
. 13 03
O l - O O 14 XXt YES
15 CA JZ START ;End of the count,
16 00 start again

Delay calculations

|

L.oop Delay T, 24 T-states < T x Count
| second = 24 x 1.0 x 107° x Count
|

Count = e
24 > 10°°€

= 41666 = A2C2H

The instructions outside the loop are: OUT, LXI, INR, MOV, CPI, and JNZ

(DSPLAY). These instructions require 45 T-states; therefore, the delay count is calculated
as follows:

Total Delay T, = Tg + T

| second = (45 x 1.0 x 107 + (24 x 1.0 x 10" x Count)
Count = 41665

Logic operations - Rotate

RLC : Rotate Accumulator Left

RAL : Rotate Accumulator Left through carry
RRC : Rotate Accumulator Right

RAR : Rotate Accumulator Right through carry

RLC - Rotate Accumulator Left
Each bit is shifted to next bit in left position. Bit D, becomes D,
CY flag is modified according to bit D,
Assume the A= AAH and CY=0. illustrate the accumulator contents after the execution of RLC
X

o]

(;, D Dy D, Dy D, D, Do

A = 1 0 1 0 1 0 1 0 > AAH
&_/
CY

A = 0 1 0 1 | o 1) 1 C—D 55

A = 1 o 1 o 1 0 1 0 =D AAH

Logic operations - Rotate - RAL
RAL - Rotate Accumulator Left Through Carry (9 bit rotation)

Each bit is shifted to the adjacent left position.Bit D, becomes the carry bit and the carry bit is
shifted into D,

The carry flag is modified according to D,

X
a0 L
e
D, D, D; Dy D, D D, Dy,
1 0 1 0 1 0 1 0 D AAHM
LA A \C\(RS WL N
0 1 0 1 0 I 0 0 > 54u
CY

1 0 1 0 1 0 (¢} 1 C— A9H

Logical operations - Rotate - RRC
RRC - Rotate Accumulator Right

Each bit is shifted to right to the adjacent position. Bit D, becomes D,
CY flag is modified according to bit D,

Assume the contents of A= 81H and CY=0

0

O

O

Logical operations - Rotate - RAR
RRC - Rotate Accumulator Right along with carry

Each bit is shifted to right to the adjacent position. Bit D, becomes the carry bit, and the carry bit is

shifted into D,
CY flag is modified according to bit D,

Assume the contents of A= 81H and CY=0

q—l 0 0 0

g
LO]J

uuvguuv
=

lo 1 0 0 0 0 0 0|:::>40H

Generating pulse waveforms sy

Problem statement : write a
program to generate a
continuous square wave with the
period of 500 pts . Assume the
system clock period is 325 ns,
and use bit D, to output the
square wave. The instructions

used in this program.

MovAD 4T
RLC 4T
MOV D,A 4T
ANI,01 T
Out 10T
MVI 7T

JMP rotate 10T

15

05

-0
50

Address
H I 'I I()

XX00
01
02
03

04
05
06
07
08
09
0A
0B
0C
0D
OF
OF
[0
|

HEX
Code Label

16
AA

TA ROTATE:

07

57

E6

01

D3
PORT
06
COUNT
05 DELAY:
C2

0B

XX

C3

02

XX

Mnemonics

MVI D,AA
MOV A,D
RLC

MOV D,A
ANI 01H

OUT PORT]

MVI B,COUNT (7T)

DCR B (4T)

INZ DELAY (10/7T)

IMP ROTATE (10T)

Comments

;Load bit pattern AAH
Load bit pattern in A
:Change data from AAH to
» 35H and vice versa
Save (A)

‘Mask bits D;-D,

‘Turn on or off the lights
;Load delay count for 250 pis
JNext count

Repeat until (B) =0

:Go back to change logic level

Generating pulse waveforms

Register D is loaded with the bit pattern AAH (1010 1010), and the bit pattern is moved

into the accumulator. The bit pattern is rotated left once and saved again in register D. The

accumulator contents must be saved because the accumulator is used later in the program.
The next instruction, ANI, ANDs (A) to mask all but bit Dy, as illustrated below.

(A) —1 0 I 0 I 0 I 0
After RI.C —0 I 0 I 0 I 0 |
AND with O1H () 0 0 0 0 0 0 I
Remaining contents —0 0 0 0 0 0 0 I

This shows that 1 in D, provides a high pulse that stays on 250 ps because of the delay.
In the next cycle of the loop, bit Dy is at logic 0 because of the Rotate instruction, and the
output pulse stays low for the next 250 ps.

Delay calculations

L. The number of instructions outside the loop is seven; it includes six instructions be-
fore the loop beginning at the symbol ROTATE and the last instruction JMP,

Delay outside the Loop: Tq, = 46 T-states x 325 ns = 14,95 ps

2. The delay loop includes two instructions (DCR and JNZ) with 14 T-states except for
the last cycle, which has 11 T-states.

Loop Delay: Ty = 14 T-states x 325 ns X (Count — 1) + 11 T-states x 325 ns
=4.5 us (Count — 1) + 3.575 ps

:.d

The total delay required is 250 ps. Therefore, the count can be calculated as follows:

Tp=To+ T,
250 ps = 14,95 ps + 4.5 ps (Count — 1) + 3.575 ps
Count = 52.4,, = 34H

