Unit – 1 : Definition of a Data Structure-Primitive and composite Data Types, Standard Template Library, Performance Analysis and measurement, Arrays, Operations on Arrays, Order lists.
Definition of Data structure : a data structure is a way of organizing, storing and retrieving and perform operations on these data in an efficient way. Each data structue has its way of application. For example one-dimensional array, can be used to store homogenous type of data. Specialized data structuers can used to solve complex search algorithms.

Primitive data types
these are the basic data type that directly operate upon the machine insturctions. The following are the basic primitive data types

· Integers

· floating point

· boolean

· character

· constants

· strings

· pointers

composite data types : These are derived from primary data types. Using the composite data types, multiple pieces of related data can be refered as single datum. These are the following composite data types:

· Lists

· array

· stack

· queues

· linked list

· trees

· Graphs

...

	Characterstic
	Description

	Linear
	In Linear data structures,the data items are arranged in a linear sequence. Example: Array

	Non-Linear
	In Non-Linear data structures,the data items are not in sequence. Example: Tree, Graph

	Homogeneous
	In homogeneous data structures,all the elements are of same type. Example: Array

	Non-Homogeneous
	In Non-Homogeneous data structure, the elements may or may not be of the same type. Example: Structures

	Static
	Static data structures are those whose sizes and structures associated memory locations are fixed, at compile time. Example: Array

	Dynamic
	Dynamic structures are those which expands or shrinks depending upon the program need and its execution. Also, their associated memory locations changes. Example: Linked List created using pointers

Abstract data types : an abstract data type is defined in term of its data items and its related operations rather than by its implementation. In this only what operations are to be done is mentioned not how. The implemenation is left to the developer. As it gives an implementation-independent view only , it is called ‘abstract’.

[image: image1.png]Data Structures.

composite
primitive data stf Data Sirciures
[I
nteger Float Character | [painter Aarmays, Lsts Fies.
Linear Lists Non-Linear Lists
Stacks| [Queues] [Trees] [oraphs

Abstract Data Type(ADT) is a data type, where only behavior is defined but not implementation. Opposite of ADT is Concrete Data Type (CDT), where it contains an implementation of ADT. Examples: Array, List, Map, Queue, Set, Stack, Table, Tree, and Vector are ADTs
An ADT can be considered as a black box, where users can only see the syntax and semantics of its operations. The representation of the data structure is hidden.

It does not specify how data will be organized in memory and what algorithms will be used for implementing the operations. It is called “abstract” because it gives an implementation independent view. The process of providing only the essentials and hiding the details is known as abstraction.

Basic kinds of ADT operations are:

1) constructor/Destructor :- creates / deletes a new instance (object) of an ADT.

2) Transformer :- changes the state of one or more of the data values of an instance.

3) Observer:- allows us to observe the state of one or more of the data values of an instance without changing them.

4) Iterator:- allows us to process all the components in a data structure sequentially.
Linked List ADT
get() – Return an element from the list at any given position.
insert() – Insert an element at any position of the list.
remove() – Remove the first occurrence of any element from a non-empty list.
removeAt() – Remove the element at a specified location from a non-empty list.
replace() – Replace an element at any position by another element.
Size() – Return the number of elements in the list.
isEmpty() – Return true if the list is empty, otherwise return false.
isFull() – Return true if the list is full, otherwise return false.
Stack ADT
A Stack contains elements of same type arranged in sequential order. All operations takes place at a single end that is top of the stack and following operations can be performed:
push() – Insert an element at one end of the stack called top.
pop() – Remove and return the element at the top of the stack, if it is not empty.
peek() – Return the element at the top of the stack without removing it, if the stack is not empty.
size() – Return the number of elements in the stack.
isEmpty() – Return true if the stack is empty, otherwise return false.
isFull() – Return true if the stack is full, otherwise return false.

Queue ADT
A Queue contains elements of same type arranged in sequential order. Operations takes place at both ends, insertion is done at end and deletion is done at front. Following operations can be performed:
enqueue() – Insert an element at the end of the queue.
dequeue() – Remove and return the first element of queue, if the queue is not empty.
peek() – Return the element of the queue without removing it, if the queue is not empty.
size() – Return the number of elements in the queue.
isEmpty() – Return true if the queue is empty, otherwise return false.
isFull() – Return true if the queue is full, otherwise return false.

From these definitions, we can clearly see that the definitions do not specify how these ADTs will be represented and how the operations will be carried out. There can be different ways to implement an ADT, for example, the List ADT can be implemented using arrays, or singly linked list or doubly linked list. Similarly, stack ADT and Queue ADT can be implemented using arrays or linked lists.

