
PHP and HTML Text

3.1.1. Embedding PHP code in HTML

You can embed PHP inside HTML tags. In the following example 3.1 only HTML tags are

there.

Example 3-1 is a simple HTML file that we'll use for an example.

Example 3-1. All you need to start with PHP is a simple HTML document

<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <p>This is without any PHP code.</p>

 </body>

</html>

Nothing is special here; just your plain HTML file. However, you can enter PHP right into this

file; for example, let's use PHP's echo command to output some text in Example 3-2.

Example 3-2. Adding some PHP code to the HTML file

<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 echo("<p>This is with PHP code.</p>");

 </body>

</html>

3.1.1.1. Separating PHP from HTML

This looks pretty simple, but there are some problems. There's no way to tell in this file which

part is standard HTML and which part is PHP and therefore must be handled differently. To fix

this, surround your PHP code in <?php and ?> tags.

When you start writing PHP code, you'll be working with plain vanilla text files that contain PHP

and HTML code. HTML is a simple markup language that designates how your page looks in a

browser, but it is simply that: text only. The server doesn't have to process HTML files before

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-1.html#learnphpmysql-CHP-3-EX-1
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-1.html#learnphpmysql-CHP-3-EX-2

sending them to the user's browser. Unlike HTML code, PHP code must be interpreted before the

resulting page is sent to the browser. Otherwise, it will be one big mess on the user's screen.

To set apart the PHP code to inform the web server what needs to be processed, the PHP code is

placed between formal or informal tags mixed with HTML. Example 3-3 uses <?php ?> to place

the php commands inside. In this example echo and print commands are kept within <?php ?>

tags.

Example 3-3. Calling echo and print

<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <?php

 echo ("Hello world!
");

 print ('I am written with PHP.
');

 ?>

 </body>

</html>

When a browser requests this file, PHP interprets it and produces HTML markup. Example 3-4

is the HTML that is produced from the code in Example 3-3.

Example 3-4. The HTML markup produced by the PHP code

<html>

<head>

 <title>Hello World</title>

 </head>

 <body>

 Hello world!
I am written with PHP.

 </body>

</html>

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-1.html#learnphpmysql-CHP-3-EX-3
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-1.html#learnphpmysql-CHP-3-EX-4
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-1.html#learnphpmysql-CHP-3-EX-3

Figure 3-1. The output as it appears in the web browser

While writing PHP code, it's better to add comments so that the code is easier to read and

understand. PHP supports two styles of comments single-line comments and multiple-line

comments.

Example 3-5. Using comments to make your code easier to read

<html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <?php

 // A single line comment could say that we are going to

 // print hello world.

 /* This is how to do a

 multi-line comment and could be used comment out a block

 of code */

 echo("Hello world!
");

 print('Goodbye.
');

 ?>

 </body>

</html>

In Example 3-5, two comment styles are used: // for single-line comments and /* ... */ for

multiline comments. Keep in mind that if you want to place a comment in HTML markup, you

need to use the open comment <! and close comment > tags.

A semicolon (;) ends all code statements in PHP. (Because of this, semicolons can't be used in

names.) It's good style as well as practical to also start a new line after your semicolon so the

code is easier to read.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-1.html#learnphpmysql-CHP-3-EX-5
mk:@MSITStore:F:/Rec Data/Drv 4/ Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-3.html

3.2. Variables

A variable stores a value, such as the text string "Hello World!" or the integer value 1. A variable

can then be reused throughout your code, instead of having to type out the actual value over and

over again for the entire life of the variable, which can be frustrating and tedious.

In PHP, you define a variable by preceding $ symbol with user defined name like:

$variable_name = value;

The dollar sign ($) must always fill the first space of the variable. The first character after the

dollar sign must be a letter or underscore. It can't under any circumstances be a number;

otherwise, your code will not execute, so watch those typos!

 PHP variables may only be composed of alphanumeric characters and underscores; for

example, a-z, A-Z, 0-9, and _.

 Variables in PHP are case sensitive. This means that $variable_name and

$Variable_Name are different.

 Variables with more than one word should be separated with underscores; for example,

$test_variable.

 Variables can be assigned values by using the equals sign (=).

 Always end with a semicolon (;) to complete the assignment of the variable.

If you were to assign a new value to a variable with the same name, as happens in Example 3-6,

the old name would be overwritten and you would have a potential logic error in your code.

Example 3-6. Assigning a variable

<?php

 $age = 30;

 echo $age;

?>

The value of $age is

30

3.2.1.1. Reading a variable's value

To access the value of a variable that's already been assigned, simply specify the dollar sign ($)

followed by the variable name, and use it as you would the value of the variable in your code.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-6

For example, the code echo in Example 3.6 displays the value of $age.

3.2.1.2. Variable types

We have already seen two types of data:string and numerical data types that can be stored

in variables. Other data types are available namely:

Numerical data – floating point and integer type

Example : $age=30

Booleans - true or false value

String- for non-numeric data type, that can hold letters, special characters, numbers etc.String

values must be enclosed in either single quotes or double quotes.

Example $name=”welcome”

● You may also encounter the NULL data type, which is a “special” data type first

introduced in PHP 4. NULLs are used to represent “empty” variables in PHP; a variable

Other than initial assignment PHP automatically picks a data variable based on the value

assigned to it on the right hand side.

In situations where a specific type of data is required, such as the mathematical division

operation, PHP attempts to convert the data types automatically. If you have a string with a

single "2," it will be converted to an integer value of 2. This conversion is nearly always exactly

what you want PHP to do and makes coding seamless for you.

3.2.1.3. Variable scope

PHP helps keep your code organized by making sure that, if you use code that someone else

wrote (and you very likely will), the names of the variables in your code don't clash with other

previously written variable names. For example, if you're using a variable called $name that has a

value of Bill, and you use someone else's code that also has a variable called $name but uses it

to keep track of the filename log.txt, your value could get overwritten. Your code's value for

$name of Bill will be replaced by log.txt, and your code will say "Hello log.txt" instead of

"Hello Bill", which would be a big problem.

To solve this problem, PHP organizes code into functions. Functions allow you to group a chunk

of code together and execute that code by its name. To keep variables in your code separate from

variables in functions, PHP provides separate storage of variables within each function. This

separate storage space means that the scope, or where a variable's value can be accessed, is the

local storage of the function.

Example 3-7 shows how the variable you use outside of the function isn't changed by the code

within the function.

.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-7

Example 3-7. The default handling of variable scope

<?php

// define a function
function setname(){
 // Set name to ram
 $name = "ram";
}

// Set name to krishnan
$name = "krishnan";

// Call the function
setname();

// Display the age
echo $name;

?>

This displays:

krishnan

Although calling the function setname assigns “ram” to the variable $name, it's not accessing the

same variable that was defined on the main level of the program. Therefore, when you print

$name, you see the original value of “krishnan”. The bolded part of the code is what is seen when

$name = is printed, because $name in setname is a separate variable.

All of this is great, but if you really want to access or change the variable $name that was created

outside the setname function, you would use a global variable.

3.2.1.3.1. Global variables

Global variables allow you to cross the boundary between separate functions to access a

variable's value. The global statement specifies that you want the variable to be the same

variable everywhere, or globally. Figure 3-4 shows how a global variable is accessible to

everything.

Figure 3-4. The global keyword creates one global variable called $age

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-FIG-4

Example 3-8 shows that use of a global variable can result in a change.

Example 3-8. Using a global variable changes the result

<?php

// Define a function

function birthday(){

 // Define age as a global variable

 global $age;

 // Add one to the age value

 $age = $age + 1;

}

// set age to 30

$age = 30;

// Call the function

birthday();

// Display the age

echo $age;

?>

This displays:

31

Global variables should be used sparingly, since it's easy to accidentally modify a variable by

mistake. This kind of error can be very difficult to locate. Additionally, when we discuss

functions in detail, you'll learn that you can send in values to functions when you call them and

get values returned from them when they're done. That all boils down to the fact that you really

don't have to use global variables.

If you want to use a variable in a specific function without losing the value each time the

function ends, but you don't want to use a global variable, you would use a static variable.

3.2.1.3.2. Static variables

Static variables provide a variable that isn't destroyed when a function ends. You can use the

static variable value again the next time you call the function.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-8

The easiest way to think about this is to realize that the variable is a global to just that function.

In Example 3-9, we use the static keyword to define these function variables.

Example 3-9. A static variable remembering its last value

<?php

// Define the function

function birthday(){

 // Define age as a static variable

 static $age = 0;

 // Add one to the age value

 $age = $age + 1;

 // Print the static age variable

 echo "Birthday number $age
";

}

// Set age to 30

$age = 30;

// Call the function twice

birthday();

birthday();

// Display the age

echo "Age: $age
";

?>

This displays:

Birthday number 1

Birthday number 2

Age: 30

The value of $age is now retained each time the birthday function is called. The value will stay

around until the program quits. We've discussed two types of variables, but there's one more to

discuss: super global.

3.2.1.3.3. Super global variables

PHP uses special variables called super globals to provide information about the PHP script's

environment. These variables don't need to be declared as global; they are automatically

available and provide important information beyond the script's environment, such as values

from a user input.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-9

Since PHP 4.01, the super globals are defined in arrays. Table 3-1 shows the existing arrays

since PHP 4.01.

Table 3-1. PHP super globals

Variable array

name
Contents

$GLOBALS
Contains any global variables that are accessible for the local script. The

variable names are used to select which part of the array to access.

$_SERVER Contains information about the web server environment.

$_GET Contains information from GET requests (a form submission).

$_POST Contains information from POST requests (another type of form submission).

$_COOKIE Contains inform from HTTP cookies.

$_FILES Contains information from POST file uploads.

$_ENV Contains information about the environment (Windows or Mac).

$_REQUEST Contains information from user inputs. These values should not be trusted.

$_SESSION Contains information from any variables registered in a session.

An example of a super global is PHP_SELF. This variable contains the name of the running script

and is part of the $_SERVER array, as shown in Example 3-10.

Example 3-10. PHP_SELF being used with a file called test.php

<?php

echo $_SERVER["PHP_SELF"];

?>

This outputs:

/test.php

This variable is especially useful, as it can be used to call the current script again when

processing a form. Super global variables provide a convenient way to access information about

a script's environment from server settings to user inputted data.

3.2.2. Strings

Variables can hold more than just numbers. They can hold characters and strings, or an ordered

list of characters. Figure 3-6 demonstrates how an ordered list of characters becomes a string.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-TABLE-1
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-10
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-FIG-6

A string can be used directly in a function call or it can be stored in a variable. In Example 3-11,

we create the exact same string twice: first we store it in a variable, and then we place the string

directly into a function.

Example 3-11. Working with strings

<?php

$my_string = "Employee Paybill Application";

echo " Employee Paybill Application ";

?>

In Example 3-12, the first string is stored in the variable $my_string, while the second string is

used in the echo function and isn't stored. Remember to save your strings into variables if you

plan on using them more than once!

Strings are flexible. You can even insert variables into string definitions when using double

quotes to start and end your string, as shown in Example 3-12. Using a single quote to start and

end your string does not allow a variable to be placed in the string.

Example 3-12. Using a variable in a string definition

<?php

$my_string = " XYZ Company Employee Paybill Application";

echo "welcome to $my_string";

?>

This example displays "welcome to XYZ Company Employee Paybill Application"

Double quotes are used in the above string, but single quotes or apostrophes can both be used as

long as you won't be inserting variable values; see Example 3-13.

Example 3-13. Single quotes used in a string assignment

<?php

$my_string = 'Margaritaville - Suntan Oil Application!';

echo $my_string;

?>

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-11
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-12
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-12
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-13

Remember, if you want to use a single quote within a string marked with single quotes, you have

to escape the single quote with a backslash (\). Double quotes allow the use of many special

escaped characters that you can't use with a single quote string, such as an apostrophe. If you had

escaped an apostrophe with a backslash in a double-quoted string, the backslash would show up

when you output the string.

3.2.2.1. Special characters in strings

Tab, newline, and carriage returns are all examples of extra, yet ignorable, whitespace (see

Example 3-14). If you are writing to a file, a valuable tool is an escaped character. One downside

of using the apostrophe to start and end a string is that you can't include a variable. This leads us

to be careful about using HTML markup or any other string that includes quotes.

Example 3-14. Various special characters in string assignments

<?php
$newline = "A newline is \n";
$return = "A carriage return is \r";
$tab = "A tab is \t";
$dollar = "A dollar sign is \$";
$doublequote = "A double-quote is \"";
echo $newline,"
";
echo $return,"
";
echo $tab,"
";
echo $dollar,"
";
echo $doublequote,"
";
?>

The echo function uses quotes to define the start and end of a string, so you must use one of the

following tactics if your string contains quotations:

 Don't use quotes inside your string.

 Escape quotes within the string with a slash. To escape a quote, just place a slash directly

before the quotation mark; i.e., \".

 Use single quotes (apostrophes) for quotes inside your string.

 Start and end your string with apostrophes.

In Examples 3-15 and 3-16, the wrong and right use of the echo function is demonstrated.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-14
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-15
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-16

Example 3-15. Using echo with special characters

<?php

// This won't work because of the quotes around specialH2!

echo "<h2 class="specialH2">Margaritaville!</h2>";

?>

specialH2

In the first echo example, we forgot to escape the double quotes that surround the specialH2,

which is HTML text. Attempting to display this page produces the error:

Parse error: parse error, unexpected T_STRING, expecting ','

or ';' in /home/www/html/oreilly/ch3/parse.php on line 3

If you see that error, start by checking your single and double quotes to make sure they all match

up correctly, as in Example 3-16.

Example 3-16. Correct escaping of special characters

<?php

// OK because we used single quotes

echo "<h2 class=\"specialH2\">Margaritaville!</h2>";

echo '<h2 class="specialH2">Margaritaville!</h2>';

?>

Output

Example 3-16 escapes quotations by placing a slash in front of each one (\"). The slash tells

PHP that you want the quotation to be used within the string and not ending echo's string. You

can also use an apostrophe (') to mark the beginning and end of a string.

If you use an apostrophe or single quote to define your string, double

quotes don't need to be escaped. However, you can't include variables

when using single quotes.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-16
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-16

3.2.2.2. Comparing strings

PHP has functions to compare strings that aren't exactly alike. For example, you may want to

consider "Bill" to be the same as "BILL," ignoring the case of the string.

Use strcmp (string1, string2) to compare two strings including the case. The return value

is 0 if the two strings have the same text. Any nonzero value indicates they are not the same.

Use strcasecmp (string1, string2) to compare two strings without comparing the case.

The return value is 0 if the two strings have the same text. Any nonzero value indicates they are

not the same.

Example 3-17 compares "Bill" to "BILL" without considering the case.

Example 3-17. Using strcasecmp to compare two strings

<?php

$name1 = "Bill";

$name2 = "BILL";

$result = strcasecmp($name1, $name2);

if (!$result){

 echo "They match.";

}

?>

This returns:

They match.

3.2.3. Concatenation

Concatenation combines one or more text strings and variables, as shown in Example 3-18.

When performing this combination, you save yourself the hassle of creating numerous echo

statements, or in other words, you build up a string and use it.

Example 3-18. Concatenating strings together

<?php

$my_string = "Hello Max. My name is: ";

$newline = "
";

echo $my_string . "Paula" . $newline;

echo "Hi, I'm Max. Who are you? " . $my_string . $newline;

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-17
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-18

echo "Hi, I'm Max. Who are you? " . $my_string . "Paula";

//The last line is the same as echo "Hi, I'm max. Who are you?

$my_string Paula";

?>

Variables and text strings are joined together with a period (.).

Since your time is finite, tying strings and variables together helps you create dynamic web sites

faster.

3.2.3.1. Combining strings with other types

If you combine a string with another data type, such as a number, the result is also a string, as

shown in Example 3-19.

Example 3-19. Combining a string and a number

<?php

$str = "This is an example of ". 3 ." in the middle of a string.";

echo $str;

?>

This displays:

This is an example of 3 in the middle of a string.

$str contains a string even though a number was inserted into the middle.

3.2.4. Constants

You can define constants in your program. A constant, like its name implies, cannot change its

value during the execution of your program. It's defined using the define function, which takes

the name of the constant as the first parameter and the values as the second parameter. The

definition of a constant is global and can be defined as any simple (scalar) data type such as a

string or a number. You can get the value of a constant by simply specifying its name; see

Example 3-20. Unlike how you handle variables, you should not put the dollar sign ($) before a

constant. A cool thing you do with constants is using the function constant(name) to return a

constant's value when the constant's name is determined dynamically. Or you could use

get_defined_constants to return a list (as an array) of all your defined constants. If you're

unsure about the arguments to a function, you can search the PHP site at http://www.php.net to

find function parameters and return values.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-19
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-20
http://www.php.net/

These are the differences between constants and variables:

 Constants do not have a dollar sign ($) before them.

 Constants can only be defined using the define function, not by simple assignment.

 Constants are defined and accessed globally.

 Constants cannot be redefined or undefined once they have been set.

 Constants can only evaluate to scalar values.

Example 3-20 demonstrates how to use a constant in your program.

Example 3-20. Using a constant in your program

<?php
define("HELLO", "Hello world!");
define("PI",3.14);
echo HELLO; // outputs "Hello world."
echo "area of circle with radius 2= ", PI*2*2;
?>

This outputs as:

Constants are useful for values that you need to make sure don't change, such as a configuration

file location.

If you use an undefined constant, PHP assumes that you mean the name of the constant itself,

just as if you called it as a stringfor example, CONSTANT as opposed to "CONSTANT". If the define

line of Example 3-20 is commented out, the output becomes:

HELLO

3.2.4.1. Predefined constants

PHP provides a few constants that are predefined similar to the way we have some super globals.

Examples of these include __FILE__, which returns the name of the PHP file that's being

executed, and __LINE__, which returns the line number in that file. They can be handy for

generating an error message as they tell you where in your code the error occurred, as shown in

Example 3-21.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-20
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-20
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-21

Example 3-21. Echoing the line and file predefined constants for a script called predefined_constants.php

<?php

echo "Executing line ". __LINE__ . " of PHP script " . __FILE__ .

'.';

?>

This returns:

Executing line 2 of PHP script

/home/www/html/oreilly/ch3/predefined_constants.php.

The path to your script may be different than the example. On Windows, it's likely to be

C:\Program Files\Apache Group\htdocs\c3.

3.2.5. Doing Math

Variables can hold numbers, too, and it's useful to perform mathematical operations on those

numbers. All fundamental mathematical functions are available using PHP. You may feel like

you're back in middle school algebra, but the basic functions are just like they were then: adding,

subtracting, multiplying, and dividing. In Example 3-22, the divide (/) operator calculates the

average from $sum and 10.

Example 3-22. PHP mathematical function usage

<?php>

$sum=200;

$avg=$sum/10;

echo $avg;

?>

This outputs as

20

In Figure 3-9, the 82 percent outcome from our example code displays in your browser window.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-22
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-FIG-9

PHP also supports the mathematical operations listed in Table 3-2.

Table 3-2. The basic mathematical operators

Mathematical operator Name Example Result

+ Addition 2+2 4

- Subtraction 2-1 1

* Multiplication 2*2 4

/ Division 2/2 1

% Modulo (remainder) 2%1 0

The operators can take whole numbers or decimal numbers as their input.

3.2.5.1. Combined assignment

Combined assignment operators provide a shortcut for performing two common tasks at the

same time. They combine reading a variable, performing an operation on it, and placing the

result back in the same variable. The operations are mostly mathematical but can also include

other operators like concatenation.

Combined assignment operators take the form the arithmetic operator directly followed by an

equals sign (=). For example, the statement:

$counter=$counter+1;

is equivalent to:

$counter+=1;

Which is shorthand for taking the value in $counter, adding one to it, and then saving the result

back in $counter.

Table 3-3 lists the most common combined assignment operators.

Table 3-3. Combined assignment operators

Combined operation Operation Produces

$num+=y Addition $num=$num+y

$num -=y Subtraction $num=$num-y

$num *=y Multiplication $num=$num*y

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-TABLE-2
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-TABLE-3

$num /=y Division $num=$num/y

$num.= "y" Concatenation $string=$string."y"

You'll find that these operators are very handy when creating your dynamic web pages. They'll

also be used frequently in our examples. They have the added benefit of reducing the chance that

you'll have a typo in your variable name, since you need to specify the variable name once only.

Along the same lines as combined operators comes a shorthand method for adding one or

subtracting one from a variable.

3.2.5.2. Autoincrement and autodecrement

It's very common when writing your code to ether increment or decrement a variable by one. It's

so common that PHP has a special shortcut for doing it. The autoincrement operator is ++ and is

used like this:

$counter++;

What we did was:

$counter+=1;

Example 3-23 adds one to $counter.

Example 3-23. Using autoincrement to add to a variable

<?php

$counter=1;

$counter++;

echo $counter

?>

This produces:

2

The same concept applies to the automatic decrement operator, --.

Example 3-24 subtracts one from $counter.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-23
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-24

Example 3-24. Using the autodecrement operator

<?php

$counter=1;

$counter--;

echo $counter

?>

This produces:

0

This notation is used frequently when doing repetitive tasks to keep track of how many times

you've done them.

3.2.5.3. Pre-increment and -decrement

If you're incrementing or decrementing at the same time that you're also comparing the value of

the variable, such as in a for or while loop, a pre-increment or -decrement can affect the value

that's used for the comparison. When using the pre- operations, the value changes before the

comparison, which is different than the de facto post-processing.

For example:

--$counter;

or:

++$counter;

Both of the operators still change the value of the counter variable, but they change the value

sooner. If you are using that variable in a test, you'll see the current value before the change.

We'll talk more about testing the values of variable executing blocks of code repetitively in the

next chapter. Example 3-25 shows how these operators work.

Example 3-25. Using pre- and post-increment

<?php

$test=1;

echo "Preincrement: ".(++$test);

echo "
";

echo "Value afterwords: ".$test;

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-25

echo "
";

$test=1;

echo "Postincrement: ".($test++);

echo "
";

echo "Value afterwords: ".$test;

?>

This produces:

Preincrement: 2

Value afterwords: 2

Postincrement: 1

Value afterwords: 2

Notice that in Example 3-25, the value after a post- or pre-increment is always 2. When using the

pre-increment, the value is 2 in the echo statement that contains the combined operator.

In this chapter, you've learned about the basic concepts for writing PHP scripts. You've

introduced variables that can remember information while our scripts execute. You know how to

store values in variables and access those values. You don't have to worry about specifying data

types, because PHP attempts to convert types automatically. You've also learned how to do basic

mathematical operations and the shortcuts for the most common combined assignment operators.

These concepts will form the basis for the rest of what you learn about PHP programming,

including building expressions.

The next chapter will introduce more complicated PHP code such as arrays, including looping

and conditional logic. After that, we'll be able to jump into MySQL and how it operates as a

database.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-3-SECT-2.html#learnphpmysql-CHP-3-EX-25

