
Chapter 4 Expressions and Operators

4.1. Expressions

Expressions are used to do some mathematical operations or string manipulations. An operator

combines simple expressions into more complex expressions by creating relationships between

simple expressions that can be evaluated.

For example

$x=3+4

The numbers 3 and 4 are each valid expressions. The equation 3 + 4 is also a valid expression,

whose value, in this case, happens to be 7. The plus sign (+) is an operator. The numbers to either

side of it are its arguments, or operands.

Example 4-1. Sum of values

<?php

$x = 3; // x is assigned the value 3

$y = 2; // y is assigned the value 2

$z = $x + $y;

echo $z;

?>

Example 4-1 outputs:

5

4.2. Operator Concepts

PHP has many types of operators. The categories are:

 Arithmetic operators

 Array operators

 Assignment operators

 Bitwise operators

 Comparison operators

 Execution operators

 Incrementing/decrementing operators

 Logical operators

 String operators

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-1.html#learnphpmysql-CHP-4-EX-1

Arithmetic Operators

The table below lists the arithmetic operators in PHP:

Operator Name Description Example Result

x + y Addition Sum of x and y 2 + 2 4

x - y Subtraction Difference of x and y 5 - 2 3

x * y Multiplication Product of x and y 5 * 2 10

x / y Division Quotient of x and y 15 / 5 3

x % y Modulus Remainder of x divided by y

5 % 2

10 % 8

10 % 2

1

2

0

- x Negation Opposite of x - 2

a . b Concatenation Concatenate two strings "Hi" . "Ha" HiHa

Assignment Operators

The basic assignment operator in PHP is "=". It means that the left operand gets set to the value

of the expression on the right. That is, the value of "$x = 5" is 5.

Assignment Same as... Description

x = y x = y The left operand gets set to the value of the expression on the right

x += y x = x + y Addition

x -= y x = x - y Subtraction

x *= y x = x * y Multiplication

x /= y x = x / y Division

x %= y x = x % y Modulus

a .= b a = a . b Concatenate two strings

Incrementing/Decrementing Operators

Operator Name Description

++ x Pre-increment Increments x by one, then returns x

x ++ Post-increment Returns x, then increments x by one

-- x Pre-decrement Decrements x by one, then returns x

x -- Post-decrement Returns x, then decrements x by one

Comparison Operators

Comparison operators allows you to compare two values:

Operator Name Description Example

x == y Equal True if x is equal to y 5==8 returns false

x === y Identical
True if x is equal to y, and they are of

same type
5==="5" returns false

x != y Not equal True if x is not equal to y 5!=8 returns true

x <> y Not equal True if x is not equal to y 5<>8 returns true

x !== y Not identical
True if x is not equal to y, or they are

not of same type
5!=="5" returns true

x > y Greater than True if x is greater than y 5>8 returns false

x < y Less than True if x is less than y 5<8 returns true

x >= y
Greater than or

equal to
True if x is greater than or equal to y 5>=8 returns false

x <= y
Less than or equal

to
True if x is less than or equal to y 5<=8 returns true

Logical Operators

Operator Name Description Example

x and y And True if both x and y are true

x=6

y=3

(x < 10 and y > 1) returns true

x or y Or True if either or both x and y are true

x=6

y=3

(x==6 or y==5) returns true

x xor y Xor
True if either x or y is true, but not

both

x=6

y=3

(x==6 xor y==3) returns false

x && y And True if both x and y are true

x=6

y=3

(x < 10 && y > 1) returns true

x || y Or True if either or both x and y are true

x=6

y=3

(x==5 || y==5) returns false

! x Not True if x is not true

x=6

y=3

!(x==y) returns true

Array Operators

Operator Name Description

x + y Union Union of x and y

x == y Equality True if x and y have the same key/value pairs

x === y Identity
True if x and y have the same key/value pairs in the same order and

of the same types

x != y Inequality True if x is not equal to y

x <> y Inequality True if x is not equal to y

x !== y Non-identity True if x is not identical to y

Example 4-2. Casting a variable

$test=1234;

$test_string=(string)$test;

Some invalid expressions are

5=$value //bad – a value cannot be assigned to the left

$a + $b=$c //bad – the expression cannot be assigned to the left.

$value=5 //correct – as the value is assigned to the right of variable after = symbol

$c=$a+$b //correct – as an expression can be assigned to the right of a variable

4.3. Conditionals

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

In PHP we have the following conditional statements:

 if statement - use this statement to execute some code only if a specified condition is true
 if...else statement - use this statement to execute some code if a condition is true and another

code if the condition is false
 if...elseif....else statement - use this statement to select one of several blocks of code to be

executed
 switch statement - use this statement to select one of many blocks of code to be executed

 ? : : (shorthand for an if statement)

4.3.1. The if Statement

The if statement offers the ability to execute a block of code, if the supplied condition is TRUE;

otherwise, the code block doesn't execute. The type of condition can be any expression,

including tests for nonzero, null, equality, variables, and returned values from functions.

No matter what, every single conditional you create includes a conditional clause. If a condition

is true, the code block in curly brackets ({}) is executed. If not, PHP ignores it and moves to the

second condition and continues through as many clauses as you write until PHP hits an else,

then it automatically executes that block.

If statement

The syntax for the if statement is:

if (conditional expression)

 {

 block of code;

 }

If the expression in the conditional block evaluates to TRUE, the block of code after it executes. In

this example, if the variable $uname is set to guest, a welcome message is printed. Otherwise,

nothing happens.

if ($uname=="guest")

{

 echo ('Welcome to the guest page.');

 }

The curly brackets aren't needed if you want to execute only one statement, but it's good practice

to always use them, as it makes the code easier to read and more resilient to change.

4.3.1.1. The else statement

Syntax

if (condition)
 {
 code to be executed if condition is true;
 }
else
 {
 code to be executed if condition is false;
 }

The else statement example 4.6 provides for a default block of code that executes if the

condition returned is FALSE. It must always be part of an if statement, as it doesn't take a

conditional itself.

Example 4-6. else and if statements

if ($username == "guest")

{

 echo ('Welcome to the guest page.');

}

else {

 echo ('Permission denied.');

}

Remember to close out the code block from the if conditional if you used brackets to start the

block of code. Similar to the if block, the else block should also use curly brackets to begin and

end the code.

4.3.1.2. The elseif statement

All of this is great except for when you want to test for several conditions at a time. To do this,

you can use the elseif statement. It allows for testing of additional conditions until one is found

to be true or you hit the else block. Each elseif has its own code block that comes directly

after the elseif condition. The elseif must come after the if statement and before an else

statement if one exists.

The elseif structure is a little complicated, but Example 4-7 should help you understand it.

Syntax

if (condition)
 {
 code to be executed if condition is true;
 }
elseif (condition)
 {
 code to be executed if condition is true;
 }
else
 {
 code to be executed if condition is false;
 }

Example 4-7. Checking multiple conditions

if ($username == "Admin"){

 echo ('Welcome to the admin page.');

}

elseif ($username == "Guest"){

 echo ('Please take a look around.');

}

else {

 echo ("Welcome back, $username.");

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-7

}

Here you can check for and take different action based on two values for $username. Then you

also have the option to do something else if the $user_name isn't one of the first two.

The next construct builds on the concepts of the if/else statement, but it allows you to

efficiently check the results of an expression to many values without having a separate if/else

for each value.

4.3.2. The ? Operator

The ? operator is a ternary operator, meaning it takes three operands. It works like an if

statement but returns a value from one of the two expressions. The conditional expression

determines the value of the expression. A colon (:) is used to separate the expressions:

{expression} ? return_when_expression_true : return_when_expression_false;

Example 4-8 tests a value and returns a different string based on it being TRUE or FALSE.

Example 4-8. Using the ? operator to create a message

<?php

$logged_in = TRUE;

$user = "Admin";

$banner = ($logged_in==TRUE)?"Welcome back $user!":"Please login.";

echo "$banner";

?>

Example 4-8 produces:

Welcome back Admin!

This can be pretty useful for checking errors. Now, let's look at a statement that lets you check an

expression against a list of possible values to pick the executable code.

4.3.3. The switch Statement

The switch statement compares an expression to numerous values. It's very common to have an

expression, such as a variable, for which you'll want to execute different code for each value

stored in the variable. For example, you might have a variable called $action, which may have

the values add, modify, and delete. The switch statement makes it easy to define a block of

code to execute for each of those values.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-8
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-8

To illustrate the difference between using the if statement and switch to test a variable for

several values, we'll show you the code for the if statement (in Example 4-9), and then for the

switch statement (in Example 4-10).

Example 4-9. Using if to test for multiple values

if ($action == "ADD") {

 echo "Perform actions for adding.";

 echo "As many statements as you like can be in each block.";

}

elseif ($action == "MODIFY") {

 echo "Perform actions for modifying.";

}

elseif ($action == "DELETE") {

 echo "Perform actions for deleting.";

}

Example 4-10. Using switch to test for multiple values

switch ($action) {

 case "ADD":

 echo "Perform actions for adding.";

 echo "As many statements as you like can be in each block.";

 break;

 case "MODIFY":

 echo "Perform actions for modifying.";

 break;

 case "DELETE":

 echo "Perform actions for deleting.";

 break;

}

The switch statement works by taking the value after the switch keyword and comparing it to

the cases in the order they appear. If no case matches, no code is executed. Once a case matches,

the code is executed. The code in subsequent cases also executes until the end of the switch

statement or until a break keyword. This is useful for processes that have several sequential

steps. If the user has already done some of the steps, he can jump into the process where he left

off.

The expression after the switch statement must evaluate to a simple type

like a number, integer, or string. An array can be used only if a specific

member of the array is referenced as a simple type.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-9
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-10

There are numerous ways to tell PHP to not execute cases besides the matching case.

4.3.3.1. Breaking out

If you want only the code in the matching block to execute, you can place a break keyword at

the end of that block. When PHP comes across the break keyword, processing jumps to the next

line after the entire switch statement. Example 4-11 illustrates how processing works with no

break statements.

Example 4-11. What happens when there are no break keywords

$action="ASSEMBLE ORDER";

switch ($action) {

 case "ASSEMBLE ORDER":

 echo "Perform actions for order assembly.
";

 case "PACKAGE":

 echo "Perform actions for packing.
";

 case "SHIP":

 echo "Perform actions for shipping.
";

}

 echo "Perform actions for shipping.
";

}

?>

If the value of $action is "ASSEMBLE ORDER", the result is:

Perform actions for order assembly.

Perform actions for packing.

Perform actions for shipping.

However, if a user had already assembled an order, a value of "PACKAGE" produces the

following:

Perform actions for packing.

Perform actions for shipping.

4.3.3.2. Defaulting

The case statement also provides a way to do something if none of the other cases match, which

is similar to the else statement in an if, elseif, else block.

Use DEFAULT: for the switches last case statement, as shown in Example 4-12.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-11
mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-12

Example 4-12. Using the DEFAULT: statement to generate an error

switch ($action) {

 case "ADD":

 echo "Perform actions for adding.";

 break;

 case "MODIFY":

 echo "Perform actions for modifying.";

 break;

 case "DELETE":

 echo "Perform actions for deleting.";

 break;

 default:

 echo "Error: Action must be either ADD, MODIFY, or DELETE.";

}

The switch statement also supports the alternate syntax in which the switch and endswitch

keywords define the start and end of the switch instead of the curly braces {}, as shown in

Example 4-13.

Example 4-13. Using endswitch to end the switch definition

switch ($action):

 case "ADD":

 echo "Perform actions for adding.";

 break;

 case "MODIFY":

 echo "Perform actions for modifying.";

 break;

 case "DELETE":

 echo "Perform actions for deleting.";

 break;

 default:

 echo "Error: Action must be either ADD, MODIFY, or DELETE.";

endswitch;

You've learned that you can have your programs execute different code based on conditions

called expressions. The switch statement provides a convenient format for checking the value of

an expression against many possible values.

mk:@MSITStore:F:/Rec%20Data/Drv%204/%20Root/phpbooks/0596101104.chm::/0596101104/learnphpmysql-CHP-4-SECT-3.html#learnphpmysql-CHP-4-EX-13
mk:@MSITStore:F:/Rec Data/Drv 4/ Root/phpbooks/0596101104.chm::/0596101104/11011536.html

