

Object-Oriented Programming-PHP

Object Oriented Concepts:

Before we go in detail, lets define important terms related to Object Oriented Programming.

 Class: This is a programmer-defined datatype, which includes local functions as well as

local data. You can think of a class as a template for making many instances of the same

kind (or class) of object.

 Object: An individual instance of the data structure defined by a class. You define a class

once and then make many objects that belong to it. Objects are also known as instance.

 Member Variable: These are the variables defined inside a class. This data will be

invisible to the outside of the class and can be accessed via member functions. These

variables are called attribute of the object once an object is created.

 Member function: These are the function defined inside a class and are used to access

object data.

 Inheritance: When a class is defined by inheriting existing function of a parent class

then it is called inheritance. Here child class will inherit all or few member functions and

variables of a parent class.

 Parent class: A class that is inherited from by another class. This is also called a base

class or super class.

 Child Class: A class that inherits from another class. This is also called a subclass or

derived class.

 Polymorphism: This is an object oriented concept where same function can be used for

different purposes. For example function name will remain same but it make take

different number of arguments and can do different task.

 Overloading: a type of polymorphism in which some or all of operators have different

implementations depending on the types of their arguments. Similarly functions can also

be overloaded with different implementation.

 Data Abstraction: Any representation of data in which the implementation details are

hidden (abstracted).

 Encapsulation: refers to a concept where we encapsulate all the data and member

functions together to form an object.

 Constructor: refers to a special type of function which will be called automatically

whenever there is an object formation from a class.

 Destructors: refers to a special type of function which will be called automatically

whenever an object is deleted or goes out of scope.

Defining PHP Classes:

Everything oop starts with classes. Classes are the type of objects like any other variable. The

object are the instance of the class.

The general form for defining a new class in PHP is as follows:

<?php

Class Person

{

var $var1;

var $var2 = "constant string";

function myfunc ($arg1, $arg2)

{

[..]

}

[..]

}

?>

Here is the description of each line:

 The keyword class, followed by the name of the class that you want to define.

 A set of braces enclosing any number of variable declarations and function definitions.

 Variable declarations start with the special form var, which is followed by a conventional

$ variable name; they may also have an initial assignment to a constant value.

 Function definitions look much like standalone PHP functions but are local to the class

and will be used to set and access object data.

We will see the step by step process of creating a class

class Author // create with keyword class

{

}

class Author

{

var $name; // add variables if needed

.

.

.

}

Declaration of class

Declaration of methods

Declaration of members

class Author

{

var $name;

function set_author_name($data) // Add methods if needed

 //like this

{

.

.

}

.

.

}

Now to allocate the value $data passed to the function set_author_name() do as shown in the

coding to the right:

$this keyword point to the current object.

In addition, omit the $ in front of the property referring like this,

$this->name

class Author

{

var $name;

function set_author_name($data)

{

$this->name = $data; // allocate the parameter value

}

function get_author_name()

{

return $this->name;

}

.

}

The above line created a new Author object named $sujatha

All the methods and properties in the Author class are built into the $sujatha object. To call the

$sujatha object‟s set_author_name method like this, using the ->operator again

$sujatha=new Author;

$sujatha->set_author_name(“sujatha”);

Now the phpobject.php with html coding is as shown below

<html>

<head>

<title>

Creating an object

</title>

</head>

<body>

<h1>Creating an object</h1>

<?php

class Author

{

var $name;

function set_author_name($data)

{

Creating objects
So far we have seen how to create class. Now we will see how to create objects for the class

which is just created. To create new object new operator is used.

$sujatha = new Author;

class Author

{

var $name;

function set_author_name($data)

{

$this->name = $data;

}

function get_author_name()

{

return $this->name;

}

}

$sujatha = new Author; Create objects

$this->name = $data;

}

function get_author_name()

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name("sujatha"); //

echo "The name of your friend is ", $sujatha->get_author_name(), ".";

?>

</body>

</html>

In the above program the value for $name is assigned by using the statement

$sujatha->set_author_name("sujatha");

The assigned value can be retrieved by the method get_author_name as

$sujatha->get_author_name();

This can be achieved like this also

$sujatha->name;

i.e in the echo statement can be written as

echo "The name of your friend is ", $sujatha->name, ".";

Setting access to properties and methods

In all the above examples and discussion so far seen, any code has access to the $name property

of the object created. That‟s because by default a variable declared has public access, which

means the members along with their variables (properties) are accessible from everywhere in the

code. See the example below:

<?php

class Author

{

var $name;

function set_author_name($data)

{

$this->name = $data;

}

function get_author_name()

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name(“sujatha”);

echo “the name of your friend is “, $sujatha->name, “.”;

?>

In the above example the object $sujatha is able to access the $name directly as it is declared as

public. You can restrict access to the members of a class or object by using access modifiers.

They are:

 public : means “accessible to all”

 private: means “accessible in the same class”

 protected: means “accessible in the same class and classes derived from that class”

Public Access

Public access is the most unrestricted access to all, and it‟s the default. To declare

explicitly use the keyword public as follows:

<?php

class Author

{

public $name; // public access for member

public function set_author_name($data) // public access for methods

{

$this->name = $data;

}

public function get_author_name() // public access for methods

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name(“sujatha”);

echo “the name of your friend is “, $sujatha->name, “.”;

?>

Now to restrict access use private and protected

Private Access

To make a class or object member private use private key word. When a member is made

private it can‟t be accessed outside the class or object.

<?php

class Author

{

private $name;// private access for member

public function set_author_name($data)

{

$this->name = $data;

}

public function get_author_name()

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name(“sujatha”);

echo “the name of your friend is “, $sujatha->name, “.”;

?>

When the above program is executed you can see the following error message:

The name of your friend is PHP Fatal error: Cannot access private property

Author::$name in (path) on line …..

That means you have forced code outside the object to access the name stored in the

$sujatha object using the get_author_name()accessor method, instead of directly

accessing the $name property. The following code works fine as the private member is

accessed through the method defined inside the class.

<?php

class Author

{

private $name;

public function set_author_name($data)

{

$this->name = $data;

}

public function get_author_name()

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name(“sujatha”);

echo “the name of your friend is “, $sujatha->get_author_name(), “.”;

?>

You can also make a method private as

<?php

class Author

{

var $name;

function set_author_name($data)

{

$this->name = $data;

}

private function get_author_name() //private access for method

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name(“sujatha”);

echo “the name of your friend is “, $sujatha->get_author_name(), “.”;

?>

But now this code doesn‟t work as you are trying to call a private method

get_author_name() outside the object. That means you can call it only from the code

inside the object. So make changes in the above code as follows:

<?php

class Author

{

var $name;

function set_author_name($data)

{

$this->name = get_author_name(); // make changes here

}

private function get_author_name()

{

return $this->name;

}

}

$sujatha = new Author;

$sujatha->set_author_name(“sujatha”);

echo “the name of your friend is “, $sujatha->get_author_name(), “.”;

?>

Now the program works

Constructors

A constructor is used to create as well as initialize an object at the same time. In the code

function set_author_name($data)

{

$this->name=$data;

}

We create the object using new operator and then using the above function like this we

initialize the variables inside that object. But using a constructor you can initialize the

object at the time of creation itself.

In PHP constructors are built with special name as __construct (double underscore

followed by the keyword construct)

function __construct($data)

{

.

.

.

}

The above constructor takes an argument which can be assigned to the internal name

stored in the object like this:

function __construct($data)

{

$this->name=$data;

}

The constructor takes the data when the object is created with new operator. See the

below example phpconstructor.php

<html>

<head>

<title>

Creating an object

</title>

</head>

<body>

<h1>Creating an object</h1>

<?php

class Author

{

var $name;

function __construct($data) // constructor

{

$this->name=$data;

}

function set_author_name($data)

{

$this->name = $data;

}

function get_author_name()

{

return $this->name;

}

}

$kalki = new Person(“kalki”);//initialized through

 // constructor

$sujatha = new Author; // the object is created

$sujatha->set_author_name("sujatha"); //the object is

 //initialized here

echo "The name of your friend is ", $kalki->get_author_name(), ".";

echo "The name of your friend is ", $sujatha->get_author_name(), ".";

?>

</body>

</html>

In the above program the object $kalki is created and initialized at the time of creation

itself. The line in the program is given below:

$kalki = new Person(“kalki”);

In the line

$sujatha = new Author;

the object $sujatha is just created not initialized. It is initialized in the next statement

$sujatha->set_author_name("sujatha");

You can pass as many arguments to constructors as you need- as the constructor is set up

to take those arguments.

All PHP classes come with a default constructor that takes no arguments- it‟s the default

constructor that gets called when you execute code like this:

$sujatha = new Author;// constructor with default parameter – no

 // arguments

$sujatha->set_author_name("sujatha");

However, as soon as you create your own constructor, no matter how many arguments it

takes, the default constructor is no longer accessible.

Example

<?php

//declare the class

class car

{

private $model;

public function __construct($model=null)

{

if($model)

{

$this->model=$model;

}

else

{

echo '
 you have not entered model';

}

}

public function getcarmodel()

{

return '
 the car model is : '.$this->model;

}

}

$car1=new car("maruthi");

echo "
 this is car model 1 : ".$car1->getcarmodel();

$car2=new car();

echo "
 this is car model 2 : ".$car2->getcarmodel();

?>

Destructors

Besides constructors, Destructor functions are the opposite of constructors. They are called

when the object is being destroyed (for example, when there are no more references to the

object). As PHP makes sure all resources are freed at the end of each request, the importance of

destructors is limited. However, they can still be useful for performing certain actions, such as

flushing a resource or logging information on object destruction. There are two situations where

your destructor might be called: during your script‟s execution when all references to an object

are destroyed, or when the end of the script is reached and PHP ends the request. The latter

situation is delicate because you are relying on some objects that might already have had their

destructors called and are not accessible anymore. So, use it with care, and don‟t rely on other

objects in your destructors.

Defining a destructor is as simple as adding a __destruct() method to your class:

Class MyClass {

function __destruct()

{

print "An object of type MyClass is being destroyed\n";

}

}

$obj = new MyClass();

$obj = NULL;

This script prints An object of type MyClass is being destroyed In this example, when $obj =

NULL; is reached, the only handle to the object is destroyed, and therefore the destructor is

called, and the object itself is destroyed. Even without the last line, the destructor would be

called, but it would be at the end of the request during the execution engine‟s shutdown.

Inheritance

Inheritance is one of the most important aspects of OOP. It allows a class to inherit members

from another class. From the parent class with its own methods and properties are inherited by a

child class. The child class can have its own members and functions along with the public

members and public functions of its parent. In the following example a class called animal is

created. The members $age, $legs, $category, functions set_age_legs, get_age, get_legs are

declared in animal class. These are all inherited by the child class dog. The inheritance of

members and functions from parent class into child class can be done by the keyword „extends‟.

In the dog (child) class the members $type, $species and functions set_type, get_type,

set_species, get_species are declared. Another child class lion is also declared which inherits

from animal class

<?php

class animal

{

var $age;

var $legs;

var $category;

function set_age_legs($age,$legs)

{

$this->age=$age;

$this->legs=$legs;

}

function get_age()

{

return $this->age;

}

function get_legs()

{

return $this->legs;

}

}

class dog extends animal

{

var $type;

var $species;

function set_type($type)

{

$this->type=$type;

}

function get_type()

{

return $this->type;

}

function set_species($species)

{

$this->species=$species;

}

function get_species()

{

return $this->species;

}

}

class lion extends animal

{

var $type;

var $species;

function set_type($type)

{

$this->type=$type;

}

function get_type()

{

return $this->type;

}

function set_species($species)

{

$this->species=$species;

}

function get_species()

{

return $this->species;

}

}

$obj1=new dog;

$obj2=new lion;

$obj1->category="pet";

$obj2->category="wild";

$obj1->set_age_legs(15,4);

$obj2->set_age_legs(20,4);

$obj1->set_species("Dog");

$obj1->set_type("mamal");

echo "you are a ". $obj1->get_species()."
";

echo "you are a ". $obj1->get_type()."
";

echo "your will live upto ". $obj1->get_age()." years
";

echo "you have ". $obj1->get_legs()." legs
";

echo "you are a ". $obj1->category." animal
";

$obj2->set_species("Lion");

$obj2->set_type("mamal");

echo "you are a ". $obj2->get_species()."
";

echo "you are a ". $obj2->get_type()."
";

echo "your will live upto ". $obj2->get_age()." years
";

echo "you have ". $obj2->get_legs()." legs
";

echo "you are a ". $obj2->category. " animal
";

?>

the dog is declared like a regular class. The dog class has the exact functionality as

animal class along with its own functionality.

Constructors and Inheritance

How to call a base class constructor from a child class? It can be done by prefixing the

keyword parent:: before construct from the child class constructor or by prefixing the

name of the class before construct.

<?php

class Person

{

var $weight;

var $height;

var $sex;

var $age;

function __construct($w,$h,$sex,$age) //base class constructor

{

 $this->weight=$w;

 $this->height=$h;

 $this->sex=$sex;

 $this->age=$age;

}

public function set_person($w,$h,$sex,$age)

{

 $this->weight=$w;

 $this->height=$h;

 $this->sex=$sex;

 $this->age=$age;

}

public function get_person()

{

 echo "weight is $this->weight
";

 echo "height is $this->height
";

 echo "age is $this->age
";

 echo " sex is $this->sex
";

}

}

class Student extends Person

{

 var $id;

 var $stname;

 var $grad_level;

function __construct($w,$h,$sex,$age,$id,$stname,$grad_level) //declaring child

 // constructor

 //along with parent parameters

 {

 parent::__construct($w,$h,$sex,$age); //calling parent constructor

 $this->id=$id;

 $this->stname=$stname;

 $this->grad_level=$grad_level;

 }

 public function set_student($id,$stname,$grad_level)

 {

 $this->id=$id;

 $this->stname=$stname;

 $this->grad_level=$grad_level;

 }

 public function get_student()

 {

 echo " student id is $this->id
";

 echo "student name is $this->stname
";

 echo " graduation level is $this->grad_level
 ";

 }

}

$obj1=new Student();

$obj2=new Student(50,180,20,"male",100,"karthik","PG"); //initializing object

$obj1->set_person(70,167,18,"female");

$obj1->get_person();

$obj1->set_student(123,"lalitha","UG");

$obj1->get_student();

?>

Overriding methods

Redefining a base class method in a derived class is said to be overriding method. In the

below program a function named display() is declared in both parent and child class.

When it is called from the main program, it access only the immediate class , i.e the child

class method.

<?php

class Person

{

var $weight;

var $height;

var $sex;

var $age;

function __construct($w,$h,$sex,$age)

{

 $this->weight=$w;

 $this->height=$h;

 $this->sex=$sex;

 $this->age=$age;

}

public function set_person($w,$h,$sex,$age)

{

 $this->weight=$w;

 $this->height=$h;

 $this->sex=$sex;

 $this->age=$age;

}

public function get_person()

{

 echo "weight is $this->weight
";

 echo "height is $this->height
";

 echo "age is $this->age
";

 echo " sex is $this->sex
";

}

public function display() //overriding method

{

 echo "this is person class";

}

}

class Student extends Person

{

 var $id;

 var $stname;

 var $grad_level;

 function __construct($w,$h,$sex,$age,$id,$stname,$grad_level)

 {

 parent::__construct($w,$h,$sex,$age);

 $this->id=$id;

 $this->stname=$stname;

 $this->grad_level=$grad_level;

 }

 public function set_student($id,$stname,$grad_level)

 {

 $this->id=$id;

 $this->stname=$stname;

 $this->grad_level=$grad_level;

 }

 public function get_student()

 {

 echo " student id is $this->id
";

 echo "student name is $this->stname
";

 echo " graduation level is $this->grad_level
 ";

 }

 public function display() //overriding method

{

 echo "this is student class and the name is ".$this->stname;

}

}

//$obj1=new Student;

$obj2=new Student(50,180,20,"male",100,"karthik","PG");

//$obj1->set_person(70,167,18,"female");

$obj2->get_person();

//$obj1->set_student(123,"lalitha","UG");

$obj2->get_student();

$obj2->display(); //this call will call only the Student version of display() function.

?>

Output

Overloading methods

 Overriding is redefining a method, but overloading means creating an alternative version

with a different argument list. For example to find the area of shapes, a function called

area can be written with different arguments say, to find area of circle passing radius, to

find area of rectangle passing length and breadth, to find area of square passing side of

square and so on. The compiler will call the correct version of the function according the

argument passed.

<?php

//php program for function overloading

class shape

{

function __call($name_of_function,$arguments)

{

if($name_of_function=='area')

{

if(count($arguments)==1)

{

return 3.14*$arguments[0]*$arguments[0];

}

if(count($arguments)==2)

{

return $arguments[0]*$arguments[1];

}

} //if ends

} //function ends

} //class ends

$obj1=new shape;

echo "this is area of a circle is = ";

echo($obj1->area(2)); //overloading

echo "
";

echo "this is area of a rectangle is = ";

echo($obj1->area(4,5)); //overloading

?>

Autoloading classes

When many classes are created and to be included in one file we can go for autoload

function. This function is passed the names of any classes that PHP is looking for and

can‟t find in the current file. That means you can load the missing class using require or

include like this , where the class $classname is in a file autoloadeg.php

function __autoload($classname)

{

 require $classname.".php";

}

In the below example two classes called employee.php and csc.php are written as

follows;

Filename: employee.php

<?php

class employee

{

var $name;

var $age;

function set_info($data,$age)

{

$this->name=$data;

$this->age=$age;

}

function get_name()

{

return $this->name;

}

function get_age()

{

return $this->age;

}

}

?>

Filename : csc.php

<?php

class csc extends employee

{

var $dept;

var $no_of_emp;

function set_dept_info($dept,$no)

{

$this->dept=$dept;

$this->no_of_emp=$no;

}

function get_dept()

{

return $this->dept;

}

function get_no()

{

return $this->no_of_emp;

}

}

?>

Filename :autoloadeg.php

<?php

function __autoload($classname)

{

 require $classname.".php";

}

$obj1=new csc();

$obj1->set_info("krish",20);

$obj1->set_dept_info("csc",4);

echo "
your name is :".$obj1->get_name();

echo "
your age is :".$obj1->get_age();

echo "
you work in :".$obj1->get_dept();

echo "
no of employees in your dept are :".$obj1->get_no();

?>

Output

