
5. PHP Loops

Often we may want certain code that satisfies a particular condition to be repeated again and

again. Instead of adding several almost equal lines in a script we can use loops to perform a task

like this.

In PHP, we have the following looping statements:

 while - loops through a block of code while a specified condition is true
 do...while - loops through a block of code once, and then repeats the loop as long as a specified

condition is true
 for - loops through a block of code a specified number of times
 foreach - loops through a block of code for each element in an array

Each time the code in the loop executes, it is called an iteration. It's useful for many common

tasks such as displaying the results of a query by looping through the returned rows. Each of the

loop constructs requires three basic pieces of information. First initialization of loop variable is

done. Then secondly, when to stop looping based on loop condition is defined just like the

comparison in an if statement. Third, the loop variable is incremented or decremented in order

to make the loop fails so it comes out and execute the statement next to end of the loop. Within

the loop the code to perform is also required and specified either on a single line or within curly

braces.

5.1. while Loops

The while loop takes the expression followed by the code to execute.

The syntax is for a while loop is:

while (expression)

{

 code to

 execute;

}

An example is shown in Example 5.1.

Example 5-1. A sample while loop that counts to 10

<?php

$num = 1;

while ($num <= 10){

 print "Number is $num
\n";

 $num++;

}

print 'Done.';

?>

Example 5.1 produces:

Number is 1

Number is 2

Number is 3

Number is 4

Number is 5

Number is 6

Number is 7

Number is 8

Number is 9

Number is 10

Done.

Before the loop begins, the variable $num is set to 1. This is called initializing a counter variable.

Each time the code block executes, it increases the value in $num by 1 with the statement

$num++;. After 10 iterations, the evaluation $num <= 10 becomes FALSE and the loop stops,

which then prints Done..

5.2. do . . . while Loops

The do . . . while loop takes an expression such as a while statement but places it at the

end. The syntax is:

do

 {

 code to execute;

} (expression);

This loop is useful when you want to execute the block of code once regardless of the value in

the expression. For example, let's count to 10 with this loop, as in Example 5.2.

Example 5-2. Counting to 10 with do...while

<?php

$num = 1;

do {

 echo "Number is ".$num."
";

 $num++;

} while ($num <= 10);

echo "Done.";

?>

Example 5.2 produces the same results as Example 5-1; if you change the value of $num to 11,

the loop processes differently.

<?php

$num = 11;

do {

 echo $num;

 $num++;

} while ($num <= 10);

?>

This produces:

11

The code in the loop displays 11 because the loop always executes at least once. Following the

pass, while evaluates to FALSE, causing execution to drop out of the do . . . while loop.

5.3. for Loops

for loops provide the same general functionality as while loops, but also provide for a

predefined location for initializing and changing a counter value. Their syntax is:

for (initialization expression; test expression; modification expression){

 code that is executed;

}

An example for loop is:

Example 5-3. Counting to 10 with do...while

<?php

for ($num = 1; $num <= 10; $num++) {

 print "Number is $num
\n";

}

?>

This produces:

Number is 1

Number is 2

Number is 3

Number is 4

Number is 5

Number is 6

Number is 7

Number is 8

Number is 9

Number is 10

When your PHP program process the for loop, the initialization portion is evaluated. For each

iteration of the portion that increments, the counter executes, followed by a check to see whether

you're done. The result is a much more compact and easy-to-read statement.

5.4 Breaking Out of a Loop

PHP provides the equivalent of an emergency stop button for a loop: the break statement.

Normally, the only way out of a loop is to satisfy the expression that determines when to stop the

loop. If the code in the loop finds an error that makes continuing the loop pointless or

impossible, you can break out of the loop by using the break statement. It's like getting your

shoelace stuck in an escalator. It really doesn't make any sense for the escalator to keep going!

Possible problems you might encounter in a loop include running out of space when writing to a

file or attempting to divide by zero. In Example 5.4, we simulate what can happen if you divide

based on an unknown entry initialized from a form submission (that could be a user-supplied

value). If your user is malicious or just plain careless, she might enter a negative value where

you are expecting a positive value (although this should be caught in your form validation

process). In the code that is executed as part of the loop, the code checks to make sure $counter

is not equal to zero. If it is, the code calls break.

Example 5.4. Using break to avoid division by zero

<?php

$counter = -3;

for (; $counter < 10; $counter++){

 // Check for division by zero

 if ($counter == 0){

 echo "Stopping to avoid division by zero.";

 break;

 }

 echo "100/$counter
";

}

?>

This displays:

100/-3

100/-2

100/-1

Stopping to avoid division by zero.

Of course, there may be times when you don't want to just skip one execution of the loop code.

The continue statement performs this for you.

5.5 continue Statements

You can use the continue statement to stop processing the current block of code in a loop and

jump to the next iteration of the loop. It's different from break; in that it doesn't stop processing

the loop entirely. You're basically skipping ahead to the next iteration. Make sure you are

modifying your test variable before the continue statement, or an infinite loop is possible.

Example 5-5 shows the preceding example using continue instead of break.

Example 5-5. Using continue instead of break

<?php

$counter =- 3;

for (; $counter < 10; $counter++){

 // Check for division by zero

 if ($counter == 0){

 echo "Skipping to avoid division by zero.
";

 continue;

 }

 echo "100/$counter
";

}

?>

Example 5-5 displays:

100/-3

100/-2

100/-1

Skipping to avoid division by zero.

100/1

100/2

100/3

100/4

100/5

100/6

100/7

100/8

100/9

Notice that the loop skipped over the $counter value of zero but continued with the next value.

We've now covered all of the major program flow language constructs. We've discussed the

building blocks for controlling program flow in your programs. Expressions can be as simple as

TRUE or FALSE and as complex as relational comparison with logical operators. The expressions

combined with program flow control constructs like the if statement and switch make decision

making easy.

We also discussed while, while . . . do, and for loops. Loops are very useful for common

dynamic web page tasks such as displaying the results from a query in an HTML table.

The foreach Loop

The foreach loop is used to loop through arrays.

Syntax

foreach ($array as $value)
 {
 code to be executed;
 }

For every loop iteration, the value of the current array element is assigned to $value (and the

array pointer is moved by one) - so on the next loop iteration, you'll be looking at the next array

value.

Example

The following Example 5.6 demonstrates a loop that will print the values of the given array:

<html>
<body>

<?php
$x=array("one","two","three");
foreach ($x as $value)
 {
 echo $value . "
";
 }
?>

</body>
</html>

Output:

one

two

three

