
Unit-3

header — Send a raw HTTP header. header() must be called before any actual output is

sent, either by normal HTML tags, blank lines in a file, or from PHP. It is a very common

error to read code with include(), or require(), functions, or another file access function, and

have spaces or empty lines that are output before header() is called.

General syntax

header(string, replace, http_response_code)

Table 1: parameters of header

Parameter Description

string Required. Specifies the header string to send

replace Optional. Indicates whether the header should replace previous or add a

second header. Default is TRUE (will replace). FALSE (allows multiple

headers of the same type)

http_response_code Optional. Forces the HTTP response code to the specified value

(available in PHP 4.3 and higher)

Parameters

String : the header string

There are two special-case header calls. The first is a header that starts with the string

"HTTP/" (case is not significant), which will be used to figure out the HTTP status code to

send. For example, if you have configured Apache to use a PHP script to handle requests for

missing files (using the ErrorDocument directive), you may want to make sure that your

script generates the proper status code (example 1)

Example 1: Script producing status code

<?php

header("HTTP/1.0 404 Not Found");

?>

The second special case is the "Location:" header. Not only does it send this header back to

the browser, but it also returns a REDIRECT (302) status code to the browser unless the

201 or a 3xx status code has already been set. (example 2)

Example 2: redirecting

<?php

header("Location:http://www.example.com/"); /*Redirect browser*/

/*Make sure that code below does not get executed when we redirect.*/

exit;

?>

http://www.example.com/

Replace

The optional replace parameter indicates whether the header should replace a previous

similar header, or add a second header of the same type. By default it will replace, but if

you pass in FALSE as the second argument you can force multiple headers of the same type.

For example:

Example 3: using replace parameters

<?php

header('WWW-Authenticate: Negotiate');

header('WWW-Authenticate: NTLM', false);

?>

http_response_code

The last argument is HTTP response code. While $replace argument maybe not so useful,

$http_response_code might come handy, because it allows to select method of redirection. We will be

interested in 3xx response codes as they are responsible for redirections.

 301 – Moved Permanently. This and all future requests should be directed to the given URI.

 302 – Moved Temporarily. Usually browsers use it as 303 redirection

 303 – See Other. Resource you are looking for can be found under different URL

 304 – indicates the resource has not been modified since last requested.

 305 –Use Proxy

 306 – Switch Proxy

 307 – Temporary Redirect

 308 – Resume Incomplete

Example 4 : If you want the user to be prompted to save the data you are sending, such as a

generated PDF file, you can use the » Content-Disposition header to supply a recommended

filename and force the browser to display the save dialog.

Example 4 :

<?php

// We'll be outputting a PDF

header('Content-type: application/pdf');

// It will be called downloaded.pdf

header('Content-Disposition: attachment; filename="downloaded.pdf"');

// The PDF source is in original.pdf

readfile('original.pdf');

?>

The header() function allows you send a custom header command to the web browser.

http://www.faqs.org/rfcs/rfc2183

Output of example4

The main thing to remember with the header function is that it must be the first thing that sends output

in you script. If it is not, you will receive the "headers already sent" error. The output can include error

messages or simply a blank line before your initial <?php statement.

Examples

Here are some valid PHP redirections:

header("Location: http://google.com");

header("Location: pages/page.php");

header("Location: http://google.com", true, 303);

header("Location: http://google.com", true);

Remember also that headers MUST be sent before any output is started. There are no exceptions from

this rule, in fact you cannot even sent a blank line to the output, executing code like this:

text

<?php header("Location: ditio.net"); ?>

will throw warning “Cannot add/modify header information – headers already sent by…“. To avoid such

situation you can use output buffering or just make sure that nothing was sent to the client.

PHP and HTTP Authentication

PHP can use the already existing authentication form from the Apache web server. It is possible to use

the header() function to send an "Authentication Required" message to the client browser causing

http://www.php.net/manual/en/function.header.php

it to pop up a Username/Password input window. Once the user has filled in a username and a

password, the URL containing the PHP script will be called again with the predefined variables

PHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE set to the user name, password and

authentication type respectively. These predefined variables are found in the $_SERVER and

$HTTP_SERVER_VARS arrays.

A typical transaction between an HTTP client and an HTTP server might comprise the following steps:

 the client requests a page that requires authentication but does not provide a user name and
password; typically this is because the user simply entered the address or followed a link to the
page

 the server responds with the 401 ("Unauthorized") response code, including the required
authentication scheme and the authentication realm

 at this point, the client will present the authentication realm (typically a description of the
computer or system being accessed) to the user and prompt for a user name and password; the
user has the option to cancel at this point

 once the user has supplied a user name and password, the client adds an Authorization header
(with value base64encode(username+":"+password)) to the original request and re-sends it

 in this example, the server accepts the authentication and the page is returned; if the user name
is invalid or the password incorrect, the server might return the 401 response code and the
client would prompt the user again.

How HTTP Authentication Works

Figure 1: below shows the interaction between a web browser and a web server when a request is

challenged The browser sends a request for a resource stored on the server. The server sends back a

challenge response with the status code set to 401 Unauthorized, and the header field WWW-

Authenticate. The WWW-Authenticate field contains parameters that instruct the browser on how to

meet the challenge. The browser may need to prompt for a username and password to meet the

challenge. The browser then resends the request, including the Authorization header field that contains

the credentials the server requires.

http://www.php.net/manual/en/reserved.variables.php
http://www.php.net/manual/en/reserved.variables.server.php
http://en.wikipedia.org/wiki/Hyperlink

Example 5: Using HTTP authentication with a PHP script

<<?php

If (!isset($_SERVER['PHP_AUTH_USER']) ||

!isset($_SERVER['PHP_AUTH_PW']))

{

header('WWW-Authenticate: Basic realm="Member Area"');

header("HTTP/1.0 401 Unauthorized");

echo "Please login with a valid username and password";

exit;

}

else

{

echo "You entered a username of : ".$_SERVER['PHP_AUTH_USER'];

echo " and a password of : ".$_SERVER['PHP_AUTH_PW'];

}

?>

The WWW-Authenticate header field contains the challenge method, the method by which the browser

collects and encodes the user credentials. In the example the method is set to Basic. The header field

also contains the name of the realm the authentication applies to.

The realm is used by the browser to label usernames and passwords and is displayed when credentials

are collected; Figure 2 shows the realm Member Area. A browser can automatically respond to a

challenge if the browser has previously collected credentials for the realm. The browser stores

authentication credentials for each realm it encounters until the browser program is terminated. Once

Figure 1: The sequence of HTTP requests and responses when an unauthorized page is

requested

the browser has collected the credentials, it resends the original request with the additional

Authorization header field. The Example 5: shows a request containing encoded credentials in the

Authorization header field.

If the user clicks the login button without entering data , he’ll see the Figure 3:

 Figure 2: Request for authorization

 If the user clicks the cancel button without entering data , he’ll see the Figure 4

Storing username and password in the PHP script itself

The example 6: validates the username and password retrieved from an authentication prompt. This is

given inside the PHP coding itself. Instead of this you can store username and password in a data base

and check whether the user entered information is matching with that of present in the database.

Example 6: Checking the values returned from the authentication prompt

1. <?php

2. $username='sujatha';

3. $password='rangarajan';

4. if(!isset($_SERVER['PHP_AUTH_USER'])||

!isset($_SERVER['PHP_AUTH_PW']))

5. {

6. header('WWW-Authenticate: Basic realm="Member Area"');

7. header("HTTP/1.0 401 Unauthorized");

8. echo "you must enter a username and password combination";

9. exit;

10. }

11. elseif (strcmp($_SERVER['PHP_AUTH_USER'],$username) !==0

12. || strcmp($_SERVER['PHP_AUTH_PW'], $password) !==0)

13. {

14. header('WWW-Authenticate: Basic realm="Member Area"');

15. header("HTTP/1.0 401 Unauthorized");

16. echo "your username and password combination was

incorrect";

17. exit;

18. }

19. echo (" your entered correct");

20. ?>

 In the above code line 4 checks for the authentication of the user and their password which are

allocated in the line 2 & 3.

If the values are not entered properly then the message in line 8 will be displayed on the browser.

Line 11 and 12 using the strcmp function checks for the exact match of the input values and the values

defined in line 2 and 3 and if both are same then the line 19 is executed else line 16 is executed. On

executing line 19 we can place allow the user to enter our web page by placing a hyper link there or by

redirecting it. When the data is entered correctly the Figure 5 is displayed.

Storing username and password in a database

Instead of storing the username and password in PHP script the values are stored in database and we are

going to check. When you store the data in program it is not dynamic. Not only that we can check only

against a single user. But suppose we want to allow our web page to be accessed by many authenticated

user then the best choice is to store the data in the database and check the authentication. To do follow

the steps

1) Create the data base

2) create the table

3) insert the user details into table.

4) Write PHP coding so that connectivity with database is formed and data is extracted and checked

against login form for authentication.

mysql>create database user;

Query OK, 1 row affected (0.01 sec)

mysql> use user;

Database changed

mysql> insert into users values('sujatha',MD5('secret'));

Query OK, 1 row affected (0.00 sec)

mysql> select * from users;

+----------+----------------------------------+

| username | password |

+----------+----------------------------------+

| sujatha | 5ebe2294ecd0e0f08eab7690d2a6ee69 |

+----------+----------------------------------+

1 row in set (0.00 sec)

Now that you've created the table. You've entered the MD5 function in INSERT command to provide an

extra layer of security. Even if a malicious user can not encode this password.

First we write a config.php program which has the database information.

Example 7: Config.php

1. //config.php

2. <?php

3. $host="localhost";

4. $db_user="root";

5. $db_pass="";

6. $db_name="user";

7. ?>

Next we write the program which gets input from http_authentication screen and verify the data with

the database value and if both are same it allows the user to login.

Example 8: loginscreen.php

1. //loginscreen.php

2. <?php

3. require_once 'config.php';

4. if(!isset($_SERVER['PHP_AUTH_USER']) ||

!isset($_SERVER['PHP_AUTH_PW']))

5. {

6. header('WWW-Authenticate: Basic realm="Member Area"');

7. header("HTTP/1.0 401 Unauthorized");

8. echo "you must enter in a username and password combination";

9. exit;

10. }

11. $uname=$_SERVER['PHP_AUTH_USER'];

12. $pass=$_SERVER['PHP_AUTH_PW'];

13. $dbhandle=mysqli_connect($host,$db_user,$db_pass,$db_name)

 or die("unable to connect");

14. echo "succesfully connected
";

15. $query="select * from users where username = "."'$uname'" ." and

password = MD5('".$pass."')";

16. $st_table=mysqli_query($dbhandle,$query)

 or die("unable to execute".$query);

17. if(!$row=mysqli_fetch_array($st_table))

18. {

19. header('WWW-Authenticate: Basic realm="Member Area"');

20. header("HTTP/1.0 401 Unauthorized");

21. echo "your username and password are incorrect";

22. exit;

23. }

24. echo "you have successfully logged in as ".$row['username'];

25. ?>

Line 6 prompt the user with login screen and if he enters erroneous data than line 7 is responsible for

displaying unauthorized information and asks user to login with proper data. In line 11 and 12 we extract

the value entered by user in local variable $uname and $pass. Line 13 will check for database

connectivity. In line 15 the sql query is used to check database whether the username and password

entered by the user in the login screen match with that of database fields. In line 17 checks whether the

query resulted any row. If successful this means the user detail is present in database else the again the

user is prompted with login screen by line 19 through 22.

The output of the program on successful login is given in Figure 6:

 Security

we can tighten the security by providing security to the directories in which we have written our web site

and its related programs. A way of creating this security is through creation of .htaccess file in the same

web directory as the scripts. This file tells Apache to require a user to authenticate it before it returns

any of the information in that directory.

To do this write the following information in .htaccess file and keep it in the directory for which you need

security. In this case I have created a folder called pass under /home/sv

The use the following command for rights

chmod 777 /home/sv/pass

Then type the following to create new password file as such:

sv@ubuntu:~$ htpasswd -c /home/sv/pass/password radha

Adding password for radha.

New password:

Re-type new password:

To create a .htaccess file open a text file (notepad or gedit) and type the following:

Example 9 : .htaccess

AuthType Basic

AuthName "Administrators Only"

AuthUserFile /home/sv/pass/password

Require valid-user

You have to store it without file name but with extension only as (.htaccess) and this has to be stored in

the directory for which we are going to give more security. Requesting a directory or subdirectory where

this file is stored causes the prompt in Figure 7 to display in Firefox or any browser.

Failure to supply a correct username and password causes the warning as in

Figure 8

Basic Authentication with .htpasswd in Xampp (Windows)

The basic http authentication created with .htaccess and .htpasswd files works pretty well

on online real server. However implementing them locally on our Xampp server (on Windows)

may be a little problematic.

First of all, we need 2 files need to be created, .htaccess and .htpasswd. All the user

passwords are stored inside the .htpasswd file.

Open the notepad and type the following: Name the file as .htaccess (extension only no

filename) and save it in the folder for which we want the security.

AuthType Basic

AuthName "my protected area"

AuthUserFile d:\xampp\htdocs\phpprgs\test\.htpasswd

Require valid-user

 In this case an index.php file is created inside the folder test. So the file has to be stored inside

the test folder

Our working folder is "test”. We created the .htaccess inside that only.

Next we would create the .htpasswd file with the help of command 'htpasswd', the

corresponding windows executable file 'htpasswd.exe' resides in xampp\apache\bin folder.

So, check the next screenshot to understand how we create the password file required for

authentication.

We gave the command "htpasswd -c -m -b .htpasswd admin admin_pass". "admin"

is going to be the username and "admin_pass" would be our password.

-c : create a new file

-m : MD5 encryption is enforced

-b : Use the password given at the command prompt

Check the third line where the path of the password file is clearly mentioned. Now when we try

to go to http://localhost/phpprgs/test, a prompt appears asking for user id and

password. If valid id and password given, then we are redirected to index.php.

Use of Including files

Always store the include files which are having very important information like database connectivity,

password etc with extension .php only instead of .inc. Because .inc allows the user to see the PHP source

code. But if it is stored with .php the user cannot see the source.

Storing passwords in Database.

Always store the passwords in the database after encoding them. There are two ways in which you can

encode 1) using MD5 and 2) using sha1

using MD5 :

This returns a 128-bit string. You can use it while inserting data into database like below.

mysql> insert into users values('sujatha',MD5('secret'));

using sha1:

Returns a 16-bit string. This is more powerful ,advanced and complex than MD5. It is hard to break the

code.

Example 10: use of md5 and sha1 for password entry

<?php

echo "encrypting sujatha using md5 : " . md5("sujatha");

echo "
";

echo "encrypting sujatha using sha1 : " . sha1("sujatha");

?>

The output for the above program is given in Figure 9

http://2.bp.blogspot.com/-GT1lG5Y9ge0/UhSxI3hdIHI/AAAAAAAAAhw/DEDvUS6s1QY/s1600/authentication.jpg
http://2.bp.blogspot.com/-GT1lG5Y9ge0/UhSxI3hdIHI/AAAAAAAAAhw/DEDvUS6s1QY/s1600/authentication.jpg

Validating and Error Handling

Validating User Input with javascript

On the client side, your best tool for validating data is JavaScript. JavaScript is different than PHP,

because it's designed to execute in the user's browser instead of on the server. Because it executes in the

client's computer, JavaScript is not allowed to access anything that could be a security risk, such as the

local filesystem or network resources. JavaScript is primarily used in web pages. Although its name

sounds like Java, it has no relationship to it. Some of the practical things you can do with JavaScript are

checking fields and alerting the user to a problem before the data is submitted to the server

Example 11 : Building a form that validates its fields before submission.

//formvalidate.html

1. <script lang="JavaScript1.2" src="source.js">

2. </script>

3. <html>

4. <head>

5. <title> sample form </title>

6. <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">

7. </head>

8. <script language="JavaScript1.2">

9. function check_valid(form)

10. {

11. var error="";

12. error += verify_username(form.username.value);

13. if (error != "")

14. {

15. alert(error);

16. return false;

17. }

18. return true;

19. }

20. </script>

21. <body>

22. <div>TODO write content</div>

23. <form action="formvalidate.php" method="post"

24. onsubmit="return check_valid(this)" id="test1"

name="test1">

25. <input type="text" name="username">

26. <input type="submit" value="submit">

27. </form>

28. </body>

29. </html>

30.

 Example 12: javascript file : souce.js

1. function verify_username(strng)

2. {

3. var error="";

4. if(strng =="")

5. {

6. error = "you don't enter a username \n";

7. }

8. var illegal=/\W/;

9. if((strng.length<6) || (strng.length>10))

10. {

11. error="the username is wrong length";

12. }

13. else if (illegal.test(strng))

14. {

15. error="the username contains illegal char";

16. }

17. return error;

18. }

Line 1 in example 11 includes the javascript file “source.js”. This program is given as example 12. In line

12 the data from form control username (textbox) is sent for validation to function verify_username()

which is written in example 12. The function returns the error message which is displayed as alert box on

the screen. The html from line 24 call the function check_valid() which takes all the inputs in the controls

of the form. This function is written in line 9 as javascript.

In example 12 the function verify_username() takes the input which is mentioned in the form and checks

in line 4 whether the user has entered any input or not. If not it returns the error message in line 6. Once

the user enters the input line 9 checks for length of input and returns the appropriate error . Line 13

checks for illegal character which is defined in line 8. \W (allow letters, numbers, and underscores).

Figure 11 and Figure 12 gives the error messages.

Figure 11 : The javascript alert window that lists the validation problems

Figure 12 : java script validation screen

Pattern Matching

Pattern matching allows you to build expressions that match strings using a specific matching syntax

called a regular expression. Regular expressions allow you to perform searching tasks such as separating

out a certain tag for an incoming text file, or validating user input such as email addresses.

The easiest way to use regular expressions in PHP is to use the PCRE (Perl-compatible regular

expressions) extension. This extension is installed by default, so it should be part of your PHP

environment. PHP also supports a style of regular expression matching functions called ereg that are

older and less compatible than PCRE functions.

Regular Expressions

A regular expression is really just a string. The string uses a combination of special characters and literals

to allow matching of other strings. For example, the following string describes an email address:

\b[A-Z0-9._%-]+@[A-Z0-9._%-]+\.[A-Z]{2,4}\b

It does this by searching for:

1. Sequential alphanumeric and punctuation characters, which form the username ([A-Z0-9._%-]+)

2. The at symbol (@) (that separates the username and domain name)

3. A group of alphanumeric and punctuation characters, which forms the first part of the domain

name ([A-Z0-9._%-]+)

4. A period, which separates the domain name from the extension (\.)

5. A two- to four-character alpha string, which signifies the top level domainfor example, com and

net ([A-Z]{2,4})

 Table 2: The descriptors used in the regular expression are:

Regular expression meaning

\b A boundary point of a word

[aAbB] One of anything inside the brackets: a, A, b, B

{2,4} A total of between 2 and 4 of anything preceding the brackets

A-Z Any letter between A and Z, such as A, B, and C

\. A literal period

+ Match the preceding block one or more times

There are two types of characters in the regular expression string. Those that match themselves, such as

the at (@) symbol, are called literals, meaning they literally match. The other type is called

metacharacters, which describe matching by specifying repetition, ranges, and combinations within the

expression.

Quantifiers

Quantifiers are metacharacters that specify how many times you wish to match the preceding pattern in

a string. They are given in table 3.

 Table 3: Quantifiers

Quantifiers meaning

* Zero or more

+ One or more

? Zero or one

{ num} Exactly num times

{ num,} At least num times

{ min,max} At least min but not more than max times

For example, the regular expression [a-f]?ex matches both alex and ex, but not ax.

Anchors

Anchors define a specific location for a match to take place.

To match the start of a line, the caret character (^) is used. To match the end of a line, the dollar

character ($) is used. To match a string that begins with I, use the regular expression ^I.

Other anchors deal with word boundaries. Words are made up of consecutive letters, digits, and

underscores. All other characters, such as spaces, punctuation, and newline characters, are word

boundaries. To match a word boundary, the backslash b (\b) character is used. To match everywhere that

isn't a word boundary, the backslash capital B (\B) character is used. Table 4 lists other word boundaries.

Table 4 Escaped word boundaries

Character Anchor type

\b A word boundary

\B A nonword boundary

\d A single digit character

\D A single nondigit character

\n The newline character

\r The carriage return character

\s A single whitespace character

\S A single nonwhitespace character

\t The tab character

\w A single word character, alphanumeric and underscore

\W A single nonword character

^ match the start of a line

$ match the end of a line

Character classes

A character class allows you to group several characters together and work with them in a regular

expression as though they were one character. Use the square brackets ([]) to group the characters

together. For example, to match any alpha character twice:

[a-zA-Z]{2}

You can also use a negated character class, which selects the opposite of the character class by adding a

caret (^) character after the opening square bracket. Note that this is the only time that caret character

doesn't represent an anchor. The following matches all nonalpha characters.

[^a-zA-Z]

Executing pattern matches in PHP

PHP uses a set of functions that start with preg_ to perform regular expression operations on strings.

These functions take a regular expression as a parameter in a string format. There are functions for doing

a variety of operations on strings, including splitting them up and returning matching portions.

The regular expression string must be in Perl format, which specifies that the regular expression start

with '/ and end with /'. The regular expression goes between the single quote and slashes, as in

'/regular expression/'. Forward slashes in the expression must be escaped with a backslash. For

example, /home/example becomes '/\/home\/example/'.

To specify regular expression options such as case insensitivity, add the parameter to the end of the

regex string after the last slash. These most common parameters are listed in table below.

Table 5 Regular expression characters

Regex character Meaning

s Dot matches all characters

i Case insensitive

m Match start and end of line anchors at embedded new lines in the search string

For example, use '/abc/i' to do a case-insensitive search of abc.

preg_match

The function preg_match is used to return all matches based on the supplied regular expression and

string. The function value returned is true if a match is found. Its syntax is:

preg_match (string pattern, string subject [, array groups])

In Example 13 we search the string example to see if it has words that start with ple. Since the string

doesn't start with ple, no results are returned.

Example 13 Using preg_match to return an array of matches that start with ple

<?php

$subject = "example";

$pattern = '/^ple/';

preg_match($pattern, $subject, $matches);

print_r($matches);

?>

The output:

Array ()

Example 14 Using preg_match to return an array of matches that has the string “ple” inside

<?php

$subject = "example";

$pattern = '/ple/';

preg_match($pattern, $subject, $matches);

print_r($matches);

?>

The following functions of javascript in example 15, example 16, example 17 uses regular expressions to

check the input.

Example 15: JavaScript to check for password

// password verification

1. function verify_password (strng)

2. {

3. var error = "";

4. if (strng == "")

5. {

6. error = "You didn't enter a password.\n";

7. }

8. var illegalChars = /[\W_]/; // allow only letters and numbers

9. if ((strng.length < 6) || (strng.length > 8))

10. {

11. error = "The password is the wrong length. It must be 6 to 8 characters.\n";

12. }

13. else if (illegalChars.test(strng))

14. {

15. error = "The password contains illegal characters.\n";

16. }

17. else if (!((strng.search(/(a-z)+/)) && (strng.search(/(A-Z)+/)) &&

18. (strng.search(/(0-9)+/))))

19. {

20. error = "The password must contain at least one uppercase letter, one

21. lowercase letter, and one numeral.\n";

22. }

23. return error;

24. }

25.

Explanation of the code: This code checks whether the user has entered valid characters in password

field before sending the data to database in server side.

Line 8 we define the legal characters for password. This is done by /[\W_]/ where the '/' forward slash in

both end marks the boundaries and \W_ indicates that it allows only numbers and letters. The use of []

square bracket is to group the letters and numbers. This is checked in line 13.

Line 9 checks for the length of the input.

Line 17 search for small case letters within /(a-z)+/ (I.e between a to z followed by more than that type

and search for capital letters also by the string /(A-Z)+/ and search for the presence of numbers given by

/(0-9)+/ and print the appropriate error messages.

Example 16: JavaScript to check for email entry

Explanation of the above code:

Explanation of the code: This code checks whether the user has entered valid email id before sending the

data to database in server side.

Line 3 checks whether the user has entered anything or not.

Line 6 we define the legal characters for email. This is done by /^.+@.+\..{2,3}$/ where the '/' forward

slash in both end marks the boundaries .

In line 12 illegal characters for an emailid is defined as /[\(\)\<\>\,\;\:\\\"\[\]]/

In this the characters are escaped with backslash. For example in the above code if it is like \(then the

meaning is only square left bracket '(' like wise the characters

[() < > , ; : \ “] are considered illegal. The validation of input string is done in the line 13.

