
File Handling in PHP
Opening and Closing Files
Files are opened in PHP using the fopen command. The command has two parameters.

 File to be opened

 mode in which to open the file.

Syntax

$filehandle=fopen(filename, mode [use_include_path [, zcontext]])

Where filename is the name of the file to be opened, mode indicates how to open the file,

use_include_path may be set to 1 or TRUE to specify path to be searched for the file, zcontext holds

an optional file context.

File Modes
The following table shows the different modes the file may be opened in.

Mode Description

r Read Only mode, with the file pointer at the start

of the file.

r+ Read/Write mode, with the file pointer at the

start of the file.

W Write Only mode. Truncates the file (effectively

overwriting it). If the file doesn‟t exist,

fopen will attempt to create the file.

w+ Read/Write mode. Truncates the file (effectively

overwriting it). If the file doesn‟t exist,

fopen will attempt to create the file.

a Append mode, with the file pointer at the end of

the file. If the file doesn‟t exist, fopen

will attempt to create the file.

a+ + Read/Append, with the file pointer at the end

of the file. If the file doesn‟t exist, fopen

will attempt to create the file

x Create and open for writing only. If the file already
exists, fopen() will fail by returning FALSE and
generating an error. If the file does not exist,
attempt to create it.

x+ Create and open for reading and writing. If the file
already exists, fopen() will fail by returning FALSE
and generating an error. If the file does not exist,
attempt to create it.

Note: The mode may also contain the letter 'b'. This is useful only on systems which differentiate

between binary and text files (i.e.Windows. It's useless on Unix/Linux). If not needed, it will be

ignored.

First create a data.txt file by opening a notepad and type the following

This

Is

My

Data file

You can read the content of this file by the following php coding

<?php

$handle=fopen("data.txt","r");

.

.

.

?>

If the open operation fails , fopen returns FALSE.

<html>

<head>

<title>opening a file</title>

</head>

<body>

<h1> opening a file in php using fopen()</h1>

<?php

$handle=fopen("data.txt","r");

if($handle)

{

echo "File opened ok.";

}

?>

</body>

</html>

Output:

Using feof for looping over all the lines in file

When there are multiple lines in a file, we would like to read all the lines, i.e till the end of

the file. There is function called feof() which do this . it checks whether reading has reached

end of the file and returns true if it reached.

fgets() function is used to get a string of text from a file; syntax is

fgets (handle [, length])

example

<?php

$handle=fopen("data.txt","r");

while (!feof($handle))

{

$x=fgets($handle);

.

.

}

.

.

?>

<html>

<head>

<title>opening a file</title>

</head>

<body>

<h1> opening a file in php using fopen()</h1>

<?php

$handle=fopen("data.txt","r");

while (!feof($handle))

{

$x=fgets($handle);

echo $x,"
";

}

?>

</body>

</html>

Closing a file
The file can be closed with the command

fclose($filehandle);

This frees up the resources connected with that file.

Reading from a file character by character with fgetc()
Syntax

fgetc($filehandle);

This function returns the character read.

To read an individual character from file.txt :

<?php

$handle=fopen(“file.txt”,”r”);

$char=fgetc($handle)

.

..

}

?>

To loop over all the characters in the file, you can put the preceding statement in the

condition of a while loop- when fgetc returns FALSE, there are no more characters to read:

<?php

$handle=fopen(“file.txt”,”r”);

while($char=fgetc($handle))

{

.

..

}

?>

And you can echo each character as you read:

<?php

$handle=fopen("data.txt","r");

while($char=fgetc($handle))

{

echo "$char";

}

?>

When a newline character is read from the file it is simply sent to the browser, which doesn‟t

display newline characters and do nothing. You have to convert them to
 element

instead. In the above program the „\n‟ is not replaced. So you can see the effect in the output.

In replacing the „\n‟ with
 as below you can see the difference.

<?php

$handle=fopen("data.txt","r");

while($char=fgetc($handle))

{

if($char=="\n")

{

$char="
";

}

echo "$char";

}

fclose($handle);

?>

Reading the whole file at once with file_get_contents
You can read the entire contents of the file with the file_get_contents function:

Syntax

file_get_contents(filename [, use_include_path [, context [, offset [, maxlen]]]])

filename is the name of the file on which operation is carried over

use_include_path is set to TRUE if you want to search PHP‟s include path

context is a context for the operation

offset is the offset into the file at which to start reading

maxlen is the maximum length of data to read.

In the below example the entire content of a file is read into a variable $text at once:

<?php

$text=file_get_contents("data.txt");

.

.

?>

The code to convert all newlines to
 is str_replace.

<?php

$text=file_get_contents("data.txt");

$text1=str_replace("\n","
",$text);

echo $text1;

?>

Output

Reading a file into an array with file
You can use the file function to read a file into an array all at once. Each line becomes an

element in the array.

Syntax

file (filename [, use_include_path [, context]])

filename is the name of the file on which operation is carried over

use_include_path is set to TRUE if you want to search PHP‟s include path

context is a context for the operation

In the below example the entire content of a file is read into an array $array1 at once:

<?php

$array1=file("data.txt");

.

.

}

?>

After which you can read the data in array as usual using foreach statement as below:

<?php
$array1=file("data.txt");
foreach($array1 as $line)
{
echo $line, "
";
}
?>

Checking a file existence:

You can check whether a file exists or not by using file_exists command
Syntax
file_exists(filename)

<?php
if(file_exists("data.txt"))
{
$array1=file("data.txt");

foreach($array1 as $line)
{
echo $line, "
";
}
else
echo "file doesnot exists";
?>

Getting the size of the file
The file size can be received using filesize function
Syntax
filesize(filename)

Deleting a file
You can delete a file using unlink function
Syntax
unlink(filename [,context])

writing to a file with fwrite
syntax
fwrite(handle, string [, length])

<?php
$handle=fopen("data1.txt","w");
$text="here\n is \n the \ntext";
fwrite($handle,$text);

?>

Appending to a file with fwrite
By changing the file mode to “a” we can append the existing data file as follows

<?php
$handle=fopen("data1.txt","a");
//$text="here\n is \n the \ntext";
$text1="this is appending";
fwrite($handle,$text1);

?>

