
Exception Handling - PHP

Error handling is the process of catching errors raised by your program and then taking appropriate

action. If you would handle errors properly then it may lead to many unforeseen consequences.

Its very simple in PHP to handle an errors.

Using die() function:

While wirting your PHP program you should check all possible error condition before going ahead and

take appropriate action when required.

Try following example without having “test.txt” file and with this file. The output is given in figure 1

Example 1: exception_eg1.php

<?php

if(!file_exists("test.txt"))

 {

 die("File not found");

 }

else

 {

 $file=fopen("test.txt","r");

 print "Opend file sucessfully";

 }

?>

//output

Figure 1

This is what normally happens when an exception is triggered:

 The current code state is saved

 The code execution will switch to a predefined (custom) exception handler function

 Depending on the situation, the handler may then resume the execution from the saved code

state, terminate the script execution or continue the script from a different location in the code

Basic Use of Exceptions

When an exception is thrown, the code following it will not be executed, and PHP will try to find the

matching "catch" block.

If an exception is not caught, a fatal error will be issued with an "Uncaught Exception" message.

Lets try to throw an exception without catching it: The output can be seen in figure 2.

Example 2 :dividezero_exep.php

<?php

function div($a,$b)

{

if($b==0)

{

throw new Exception("divide by zero");

}

return($a/$b);

}

echo div(5,0);

?>

//output

Figure 2

This way you can write an efficient code. Using above technique you can stop your program whenever

it errors out and display more meaningful and user friendly message.

Try, throw and catch

To avoid the error from the example above, we need to create the proper code to handle an exception.

Proper exception code should include:

1. Try - A function using an exception should be in a "try" block. If the exception does not trigger,

the code will continue as normal. However if the exception triggers, an exception is "thrown"

2. Throw - This is how you trigger an exception. Each "throw" must have at least one "catch"

3. Catch - A "catch" block retrieves an exception and creates an object containing the exception in-

formation

Lets try to trigger an exception with valid code:

Example 3: dividezero_exep2.php

<?php

function div($a,$b)

{

if($b==0)

{

throw new Exception("divide by zero");

}

return($a/$b);

}

try

{

echo div(5,0);

}

catch(Exception $e)

{

echo $e->getMessage();

}

?>

Figure 3

Explanation

1) The div() function is created. It checks if the divisor is 0. If it is, an exception is thrown

2) The div() function is called in a “try” block.

3) The excetion within the div() function is thrown.

4) The “catch” block retrieves the exception and creates an object ($e) containing the exception

information

5) The error message from the exception is echoed by calling $e->getMessage() from the

exception object.

CREATING A CUSTOM EXCEPTION CLASS

Creating a custom exception handler is quite simple. We simply create a special class with functions

that can be called when an exception occurs in PHP. The class must be an extension of the exception

class.

The custom exception class inherits the properties from PHP's exception class and you can add custom

functions to it.

Lets create an dateException class:

The new class is a copy of the old exception class with an addition of the err_date_Msg() function.

Since it is a copy of the old class Exception, and it inherits the properties and methods from the old

class, we can use the exception class methods like getLine() and getFile() and getMessage().

Through custom_excep_eg1.html we get date input which we sent to custom_excep_eg.php which pro-

cess the date value. The outputs can be seen in figures 4,5,6 and figure 7

//custom_excep_eg1.html

<html>

<title>date exception</title>

<body>

<form action="custom_excep_eg.php" method="get">

Enter date :<input type="text" name="fdate"/>

<input type="submit"/>

</form>

</body>

</html>

//custom_excep_eg.php

<?php

class dateException extends Exception

{

function err_date_Msg()

{

echo $this->getMessage(). " Proper format dd-mm-yyyy";

}

} //dateException

try

{

$date=$_GET['fdate'];

getdatefun($date);

echo "$date in correct format";

}

catch(dateException $e)

{

echo $e->err_date_Msg();

}

function getdatefun($dt)

{

if(!date_create_from_format("d-m-Y",$dt))

{

throw new dateException("Date not in proper format");

}

}

?>

Figure 4

Figure 5

When you change the input format like below the exception is raised

Figure 6

Figure 7

Example explained:

The code above throws an exception and catches it with a dateException (custom) class:

1. The dateException() class is created as an extension of the old exception class. This way it in-

herits all methods and properties from the old exception class

2. The err_date_Msg() function is created. This function returns an error message if the date is not

entered in the prescribed format.

3. The $date variable is received through $_GET function and passed as argument to getdatefun()

4. The getdatefun() checks whether the date is in given format and if not throw exception. This er-

ror is caught in catch block and displays error message.

5. If everything is ok the line next to getdatefun() will be executed and the program terminates.

Multiple catch – custom exception

The following example shows how to write more than one custom exception in a single pro-

gram for checking multiple inputs validation.

//custom_excep_eg2.php

<?php

class dateException extends Exception

{

function err_date_Msg()

{

echo $this->getMessage(). " Proper format dd-mm-yyyy
";

}

} //dateException

class nameException extends Exception

{

function err_name_msg()

{

echo $this->getMessage(). " Name should not be empty
";

}

} //nameException

try

{

$name=$_GET['fname'];

$date=$_GET['fdate'];

getdatefun($date);

echo "
 $date in correct format";

getnamefun($name);

echo "
 $name is correct";

}

catch(dateException $e)

{

echo $e->err_date_Msg();

}

catch(nameException $e)

{

echo $e->err_name_Msg();

}

function getdatefun($dt)

{

if(!date_create_from_format("d-m-Y",$dt))

{

throw new dateException(" Date not in proper format");

}

}

function getnamefun($n)

{

if($n=="")

{

throw new nameException("must enter some value");

}

}

?>

Figure 8

Figure 9

Example explained:

The code above throws an exception and catches it with a custom exception class:

1. The dateException() class is created as an extension of the old exception class. This way it in-

herits all methods and properties from the old exception class

2. The err_date_Msg() function is created. This function returns an error message if the date is not

entered in the prescribed format

3. The nameException() class is created as an extension of the old exception class. This way it in-

herits all methods and properties from the old exception class

4. The err_name_Msg() function is created. This function returns an error message if the name is

left empty i.e without entering any value.

5. The $date variable and $name is received through $_GET function and passed as argument to

getdatefun() and getnamefun() respectively.

6. The getdatefun() checks whether the date is in given format and if not throw exception. This er-

ror is caught in catch block (catch(dateException($e)) and displays error message.

7. The getnamefun() checks whether the user entered any value in the name text box and if not an

error is thrown. This error is caught in catch block (catch(dateException($e)) and displays error

message.

8. If everything is ok the line next to getdatefun() and getnamefun() will get executed and the

program terminates.

In the above example $e->getMessage function is used to get error message. There are following

functions which can be used from Exception class.

• getMessage()- message of exception

• getCode() - code of exception

• getFile() - source filename

• getLine() - source line

• getTrace() - n array of the backtrace()

• getTraceAsString() - formated string of trace

Rules for Exception

 Code may be surrounded in a try block, to help catch potential exceptions.

 Each try block or “throw” must have at least one corresponding catch block.

 Multiple catch blocks can be used to catch different classes of exceptions.

 Exceptions can be thrown in a catch block within a try block.

PHP - Predefined Variables

PHP provides a large number of predefined variables to any script which it runs.PHP provides an

additional set of predefined arrays containing variables from the web server the environment, and user

input. These new arrays are called superglobals:

All the following variables are automatically available in every scope.

PHP Superglobals:

Variable Description

$GLOBALS
Contains a reference to every variable which is currently available within the global

scope of the script. The keys of this array are the names of the global variables.

$_SERVER

This is an array containing information such as headers, paths, and script locations.

The entries in this array are created by the web server. There is no guarantee that

every web server will provide any of these. See next section for a complete list of all

the SERVER variables.

$_GET
An associative array of variables passed to the current script via the HTTP GET

method.

$_POST
An associative array of variables passed to the current script via the HTTP POST

method.

$_FILES
An associative array of items uploaded to the current script via the HTTP POST

method.

$_REQUEST An associative array consisting of the contents of $_GET, $_POST, and $_COOKIE.

$_COOKIE An associative array of variables passed to the current script via HTTP cookies.

$_SESSION An associative array containing session variables available to the current script.

$_PHP_SELF A string containing PHP script file name in which it is called.

$php_errormsg
$php_errormsg is a variable containing the text of the last error message generated by

PHP.

Server variables: $_SERVER

$_SERVER is an array containing information such as headers, paths, and script locations. The entries

in this array are created by the web server. There is no guarantee that every web server will provide any

of these.

Variable Description

$_SERVER['PHP_SE

LF']
The filename of the currently executing script, relative to the document root

$_SERVER['argv']

Array of arguments passed to the script. When the script is run on the command

line, this gives C-style access to the command line parameters. When called via

the GET method, this will contain the query string.

$_SERVER['argc']
Contains the number of command line parameters passed to the script if run on

the command line.

$_SERVER['GATEW

AY_INTERFACE']
What revision of the CGI specification the server is using; i.e. 'CGI/1.1'.

$_SERVER['SERVE

R_ADDR']
The IP address of the server under which the current script is executing.

$_SERVER['SERVE

R_NAME']

The name of the server host under which the current script is executing. If the

script is running on a virtual host, this will be the value defined for that virtual

host.

$_SERVER['SERVE

R_SOFTWARE']
Server identification string, given in the headers when responding to requests.

$_SERVER['SERVE

R_PROTOCOL']

Name and revision of the information protocol via which the page was

requested; i.e. 'HTTP/1.0';

$_SERVER['REQUE

ST_METHOD']

Which request method was used to access the page; i.e. 'GET', 'HEAD', 'POST',

'PUT'.

$_SERVER['REQUE

ST_TIME']
The timestamp of the start of the request. Available since PHP 5.1.0.

$_SERVER['QUERY

_STRING']
The query string, if any, via which the page was accessed.

$_SERVER['DOCU

MENT_ROOT']

The document root directory under which the current script is executing, as

defined in the server's configuration file.

$_SERVER['HTTP_

ACCEPT']
Contents of the Accept: header from the current request, if there is one.

$_SERVER['HTTP_

ACCEPT_CHARSE

T']

Contents of the Accept-Charset: header from the current request, if there is one.

Example: 'iso-8859-1,*,utf-8'.

$_SERVER['HTTP_

ACCEPT_ENCODI

NG']

Contents of the Accept-Encoding: header from the current request, if there is

one. Example: 'gzip'.

$_SERVER['HTTP_

ACCEPT_LANGUA

GE']

Contents of the Accept-Language: header from the current request, if there is

one. Example: 'en'.

$_SERVER['HTTP_

CONNECTION']

Contents of the Connection: header from the current request, if there is one.

Example: 'Keep-Alive'.

$_SERVER['HTTP_

HOST']
Contents of the Host: header from the current request, if there is one.

$_SERVER['HTTP_

REFERER']

The address of the page (if any) which referred the user agent to the current

page.

$_SERVER['HTTP_

USER_AGENT']

This is a string denoting the user agent being which is accessing the page. A

typical example is: Mozilla/4.5 [en] (X11; U; Linux 2.2.9 i586).

$_SERVER['HTTPS'

]
Set to a non-empty value if the script was queried through the HTTPS protocol.

$_SERVER['REMOT

E_ADDR']
The IP address from which the user is viewing the current page.

$_SERVER['REMOT

E_HOST']

The Host name from which the user is viewing the current page. The reverse

dns lookup is based off the REMOTE_ADDR of the user.

$_SERVER['REMOT

E_PORT']
The port being used on the user's machine to communicate with the web server.

$_SERVER['SCRIPT

_FILENAME']
The absolute pathname of the currently executing script.

$_SERVER['SERVE

R_ADMIN']

The value given to the SERVER_ADMIN (for Apache) directive in the web

server configuration file.

$_SERVER['SERVE

R_PORT']

The port on the server machine being used by the web server for

communication. For default setups, this will be '80'.

$_SERVER['SERVE

R_SIGNATURE']

String containing the server version and virtual host name which are added to

server-generated pages, if enabled.

$_SERVER['PATH_T

RANSLATED']
Filesystem based path to the current script.

$_SERVER['SCRIPT

_NAME']

Contains the current script's path. This is useful for pages which need to point to

themselves.

$_SERVER['REQUE

ST_URI']

The URI which was given in order to access this page; for instance,

'/index.html'.

$_SERVER['PHP_A

UTH_DIGEST']

When running under Apache as module doing Digest HTTP authentication this

variable is set to the 'Authorization' header sent by the client.

$_SERVER['PHP_A

UTH_USER']

When running under Apache or IIS (ISAPI on PHP 5) as module doing HTTP

authentication this variable is set to the username provided by the user.

$_SERVER['PHP_A

UTH_PW']

When running under Apache or IIS (ISAPI on PHP 5) as module doing HTTP

authentication this variable is set to the password provided by the user.

$_SERVER['AUTH_

TYPE']

When running under Apache as module doing HTTP authenticated this variable

is set to the authentication type.

