Chapter 1
Software and Software
Engineering

- Dual role of software

- Software questions haven't changed

- A definition of software

- Differences between hardware and software
- Changing nature of software

- Dealing with legacy software

- Software myths

(Source: Pressman, R. Software Engineering: A Practitioner s Approach. McGraw-Hill, 2005)

Dual Role of Software

« Both a product and a vehicle for delivering a product
— Product
 Delivers computing potential

« Produces, manages, acquires, modifies, display, or transmits information
— Vehicle

Supports or directly provides system functionality
Controls other programs (e.g., operating systems)
Effects communications (e.g., networking software)
Helps build other software (e.g., software tools)

Questions About Software Haven't
Changed Over the Decades

Why does it take so long to get software finished?
Why are development costs so high?

Why can't we find all errors before we give the software to our
customers?

Why do we spend so much time and effort maintaining existing
programs?

Why do we continue to have difficulty in measuring progress as
software is being developed and maintained?

A Definition of Software
(all inclusive)

Instructions (computer programs) that when executed provide desired
features, function, and performance

Data structures that enable the programs to adequately manipulate
Information

Documents that describe the operation and use of the programs

Differences between Software
and Hardware

Software is developed or engineered; it is not manufactured in the
classical sense

— Impacts the management of software projects
Software doesn't wear out
— Hardware bathtub curve compared to the software ascending spiked curve

Although the industry is moving toward component-based
construction, most software continues to be custom built (it is still
complex to build)

Software Faillure Curve

Failure
rate

increased failure
rate due to side effects

N\

actual curve

idealized curve
—

Time

Changing Nature of Software

System software

Application software
Engineering/scientific software
Embedded software

Product-line software (e.g., inventory control, word processing,
multimedia)

Web applications

Acrtificial intelligence software

Ubiquitous computing (small, wireless devices)
Netsourcing (net-wide computing)

Open source (operating systems, databases, development
environments)

The ".com" marketing applications

L egacy Software - Characteristics

Support core business functions
Have longevity and business criticality
Exhibit poor quality

— Convoluted code, poor documentation, poor testing, poor change
management

Reasons for Evolving the Legacy
Software

« (Adaptive) Must be adapted to meet the needs of new computing
environments or more modern systems, databases, or networks

» (Perfective) Must be enhanced to implement new business
requirements

« (Corrective) Must be changed because of errors found in the
specification, design, or implementation

(Note: These are also the three major reasons for any software maintenance)
9

Software Myths - Management

"We already have a book that is full of standards and procedures for

building software. Won't that provide my people with everything they need
to know?"

— Not used, not up to date, not complete, not focused on quality, time, and money
"If we get behind, we can add more programmers and catch up"

— Adding people to a late software project makes it later
— Training time, increased communication lines

"If | decide to outsource the software project to a third party, | can just
relax and let that firm build it"

— Software projects need to be controlled and managed

10

Software Myths - Customer

"A general statement of objectives is sufficient to begin writing
programs — we can fill in the details later"

— Ambiguous statement of objectives spells disaster

"Project requirements continually change, but change can be easily
accommodated because software is flexible"

— Impact of change depends on where and when it occurs in the software
life cycle (requirements analysis, design, code, test)

11

Software Myths - Practitioner

"Once we write the program and get it to work, our job is done"
— 60% to 80% of all effort expended on software occurs after it is delivered
"Until | get the program running, | have no way of assessing its quality

— Formal technical reviews of requirements analysis documents, design
documents, and source code (more effective than actual testing)

"The only deliverable work product for a successful project is the
working program"

— Software, documentation, test drivers, test results
"Software engineering will make us create voluminous and
unnecessary documentation and will invariably slow us down™

— Creates quality, not documents; quality reduces rework and provides
software on time and within the budget

12

©

