
Chapter 1

Software and Software

Engineering

- Dual role of software

- Software questions haven't changed

- A definition of software

- Differences between hardware and software

- Changing nature of software

- Dealing with legacy software

- Software myths

(Source: Pressman, R. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 2005)

2

Dual Role of Software

• Both a product and a vehicle for delivering a product

– Product

• Delivers computing potential

• Produces, manages, acquires, modifies, display, or transmits information

– Vehicle

• Supports or directly provides system functionality

• Controls other programs (e.g., operating systems)

• Effects communications (e.g., networking software)

• Helps build other software (e.g., software tools)

3

Questions About Software Haven't

Changed Over the Decades

• Why does it take so long to get software finished?

• Why are development costs so high?

• Why can't we find all errors before we give the software to our
customers?

• Why do we spend so much time and effort maintaining existing
programs?

• Why do we continue to have difficulty in measuring progress as
software is being developed and maintained?

4

A Definition of Software

(all inclusive)

• Instructions (computer programs) that when executed provide desired

features, function, and performance

• Data structures that enable the programs to adequately manipulate

information

• Documents that describe the operation and use of the programs

5

Differences between Software

and Hardware

• Software is developed or engineered; it is not manufactured in the
classical sense

– Impacts the management of software projects

• Software doesn't wear out

– Hardware bathtub curve compared to the software ascending spiked curve

• Although the industry is moving toward component-based
construction, most software continues to be custom built (it is still
complex to build)

6

Software Failure Curve

7

Changing Nature of Software

• System software

• Application software

• Engineering/scientific software

• Embedded software

• Product-line software (e.g., inventory control, word processing,
multimedia)

• Web applications

• Artificial intelligence software

• Ubiquitous computing (small, wireless devices)

• Netsourcing (net-wide computing)

• Open source (operating systems, databases, development
environments)

• The ".com" marketing applications

8

Legacy Software - Characteristics

• Support core business functions

• Have longevity and business criticality

• Exhibit poor quality

– Convoluted code, poor documentation, poor testing, poor change

management

9

Reasons for Evolving the Legacy

Software

• (Adaptive) Must be adapted to meet the needs of new computing

environments or more modern systems, databases, or networks

• (Perfective) Must be enhanced to implement new business

requirements

• (Corrective) Must be changed because of errors found in the

specification, design, or implementation

(Note: These are also the three major reasons for any software maintenance)

10

Software Myths - Management

• "We already have a book that is full of standards and procedures for
building software. Won't that provide my people with everything they need
to know?"

– Not used, not up to date, not complete, not focused on quality, time, and money

• "If we get behind, we can add more programmers and catch up"

– Adding people to a late software project makes it later

– Training time, increased communication lines

• "If I decide to outsource the software project to a third party, I can just
relax and let that firm build it"

– Software projects need to be controlled and managed

11

Software Myths - Customer

• "A general statement of objectives is sufficient to begin writing
programs – we can fill in the details later"

– Ambiguous statement of objectives spells disaster

• "Project requirements continually change, but change can be easily
accommodated because software is flexible"

– Impact of change depends on where and when it occurs in the software
life cycle (requirements analysis, design, code, test)

12

Software Myths - Practitioner

• "Once we write the program and get it to work, our job is done"

– 60% to 80% of all effort expended on software occurs after it is delivered

• "Until I get the program running, I have no way of assessing its quality

– Formal technical reviews of requirements analysis documents, design
documents, and source code (more effective than actual testing)

• "The only deliverable work product for a successful project is the
working program"

– Software, documentation, test drivers, test results

• "Software engineering will make us create voluminous and
unnecessary documentation and will invariably slow us down"

– Creates quality, not documents; quality reduces rework and provides
software on time and within the budget

