
Chapter 7

Requirements Engineering

- Problems with requirements practices 

- Requirements engineering tasks

- Inception 

- Elicitation

- Elaboration

- Negotiation

- Specification

- Validation

- Requirements management

(Source: Pressman, R. Software Engineering: A Practitioner’s Approach.  McGraw-Hill, 2005)



2

The Problems with our 

Requirements Practices

• We have trouble understanding the requirements that we do acquire 
from the customer

• We often record requirements in a disorganized manner

• We spend far too little time verifying what we do record

• We allow change to control us, rather than establishing mechanisms to 
control change

• Most importantly, we fail to establish a solid foundation for the system 
or software that the user wants built

(more on next slide)
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The Problems with our 

Requirements Practices (continued)
• Many software developers argue that

– Building software is so compelling that we want to jump right in (before 
having a clear understanding of what is needed)

– Things will become clear as we build the software

– Project stakeholders will be able to better understand what they need only 
after examining early iterations of the software

– Things change so rapidly that requirements engineering is a waste of time

– The bottom line is producing a working program and that all else is 
secondary

• All of these arguments contain some truth, especially for small projects 
that take less than one month to complete

• However, as software grows in size and complexity, these arguments 
begin to break down and can lead to a failed software project 
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A Solution: Requirements 

Engineering

• Begins during the communication activity and continues into the modeling 

activity

• Builds a bridge from the system requirements into software design and 

construction

• Allows  the requirements engineer to examine

– the context of the software work to be performed

– the specific needs that design and construction must address

– the priorities that guide the order in which work is to be completed

– the information, function, and behavior that will have a profound impact on the 

resultant design
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Requirements Engineering Tasks

• Seven distinct tasks

– Inception

– Elicitation

– Elaboration

– Negotiation

– Specification

– Validation

– Requirements Management

• Some of these tasks may occur in parallel and all are adapted to the 
needs of the project

• All strive to define what the customer wants

• All serve to establish a solid foundation for the design and construction 
of the software
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Example Project: Campus 

Information Access Kiosk

• Both podium-high and desk-high terminals located throughout the 
campus in all classroom buildings, admin buildings, labs, and 
dormitories

• Hand/Palm-login and logout (seamlessly)

• Voice input

• Optional audio/visual or just visual output

• Immediate access to all campus information plus

– E-mail 

– Cell phone voice messaging
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Inception Task

• During inception, the requirements engineer asks a set of questions to 
establish…

– A basic understanding of the problem

– The people who want a solution

– The nature of the solution that is desired

– The effectiveness of preliminary communication and collaboration between the 
customer and the developer

• Through these questions, the requirements engineer needs to… 

– Identify the stakeholders

– Recognize multiple viewpoints

– Work toward collaboration

– Break the ice and initiate the communication
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The First Set of Questions

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions focus on the customer, other stakeholders, the overall 

goals, and the benefits 
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The Next Set of Questions

• How would you characterize "good" output that would be generated by 

a successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the business environment in which the 

solution will be used?

• Will special performance issues or constraints affect the way the 

solution is approached?

These questions enable the requirements engineer to gain a better 

understanding of the problem and allow the customer to voice his or 

her perceptions about a solution 
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The Final Set of Questions

• Are you the right person to answer these questions?  Are your answers 

"official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

These questions focus on the effectiveness of the 

communication activity itself 
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Elicitation Task

• Eliciting requirements is difficult because of 

– Problems of scope in identifying the boundaries of the system or 
specifying too much technical detail rather than overall system objectives

– Problems of understanding what is wanted, what the problem domain is, 
and what the computing environment can handle (Information that is 
believed to be "obvious" is often omitted)

– Problems of volatility because the requirements change over time

• Elicitation may be accomplished through two activities

– Collaborative requirements gathering

– Quality function deployment
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Basic Guidelines of Collaborative 

Requirements Gathering
• Meetings are conducted and attended by both software engineers, 

customers, and other interested stakeholders

• Rules for preparation and participation are established

• An agenda is suggested that is formal enough to cover all important 
points but informal enough to encourage the free flow of ideas

• A "facilitator" (customer, developer, or outsider) controls the meeting

• A "definition mechanism" is used such as work sheets, flip charts, wall 
stickers, electronic bulletin board, chat room, or some other virtual 
forum

• The goal is to identify the problem, propose elements of the solution, 
negotiate different approaches, and specify a preliminary set of 
solution requirements
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Quality Function Deployment

• This is a technique that translates the needs of the customer into 
technical requirements for software

• It emphasizes an understanding of what is valuable to the customer and 
then deploys these values throughout the engineering process through 
functions, information, and tasks

• It identifies three types of requirements

– Normal requirements: These requirements are the objectives and goals 
stated for a product or system during meetings with the customer

– Expected requirements:  These requirements are implicit to the product or 
system and may be so fundamental that the customer does not explicitly 
state them

– Exciting requirements: These requirements are for features that go beyond 
the customer's expectations and prove to be very satisfying when present
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Elicitation Work Products

• A statement of need and feasibility

• A bounded statement of scope for the system or product

• A list of customers, users, and other stakeholders who participated in 
requirements elicitation

• A description of the system's technical environment

• A list of requirements (organized by function) and the domain 
constraints that apply to each

• A set of preliminary usage scenarios (in the form of use cases) that 
provide insight into the use of the system or product under different 
operating conditions

• Any prototypes developed to better define requirements

The work products will vary depending on the system, but should 

include one or more of the following items
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Elaboration Task

• During elaboration, the software engineer takes the information 
obtained during inception and elicitation and begins to expand and 
refine it

• Elaboration focuses on developing a refined technical model of 
software functions, features, and constraints

• It is an analysis modeling task

– Use cases are developed

– Domain classes are identified along with their attributes and relationships

– State machine diagrams are used to capture the life on an object

• The end result is an analysis model that defines the functional, 
informational, and behavioral domains of the problem   
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Developing Use Cases

• Step One – Define the set of actors that will be involved in the story

– Actors are people, devices, or other systems that use the system or product 

within the context of the function and behavior that is to be described

– Actors are anything that communicate with the system or product and that 

are external to the system itself

• Step Two – Develop use cases, where each one answers a set of 

questions

(More on next slide)
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Questions Commonly Answered by 

a Use Case

• Who is the primary actor(s), the secondary actor(s)?

• What are the actor’s goals?

• What preconditions should exist before the scenario begins?

• What main tasks or functions are performed by the actor?

• What exceptions might be considered as the scenario is described?

• What variations in the actor’s interaction are possible?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external 
environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?
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Elements of the Analysis Model

• Scenario-based elements

– Describe the system from the user's point of view using scenarios that are 
depicted in use cases and activity diagrams

• Class-based elements

– Identify the domain classes for the objects manipulated by the actors, the 
attributes of these classes, and how they interact with one another; they 
utilize class diagrams to do this

• Behavioral elements

– Use state diagrams to represent the state of the system, the events that 
cause the system to change state, and the actions that are taken as a result 
of a particular event; can also be applied to each class in the system

• Flow-oriented elements

– Use data flow diagrams to show the input data that comes into a system, 
what functions are applied to that data to do transformations, and what 
resulting output data are produced
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Negotiation Task

• During negotiation, the software engineer reconciles the conflicts 
between what the customer wants and what can be achieved given 
limited business resources

• Requirements are ranked (i.e., prioritized) by the customers, users, and 
other stakeholders

• Risks associated with each requirement are identified and analyzed

• Rough guesses of development effort are made and used to assess the 
impact of each requirement on project cost and delivery time

• Using an iterative approach, requirements are eliminated, combined 
and/or modified so that each party achieves some measure of 
satisfaction
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The Art of Negotiation

• Recognize that it is not competition

• Map out a strategy

• Listen actively

• Focus on the other party’s interests

• Don’t let it get personal

• Be creative

• Be ready to commit
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Specification Task

• A specification is the final work product produced by the requirements 
engineer

• It is normally in the form of a software requirements specification

• It serves as the foundation for subsequent software engineering 
activities

• It describes the function and performance of a computer-based system 
and the constraints that will govern its development

• It formalizes the informational, functional, and behavioral
requirements of the proposed software in both a graphical and textual 
format
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Typical Contents of a Software 

Requirements Specification

• Requirements
– Required states and modes

– Software requirements grouped by capabilities (i.e., functions, objects)

– Software external interface requirements

– Software internal interface requirements

– Software internal data requirements

– Other software requirements (safety, security, privacy, environment, 
hardware, software, communications, quality, personnel, training, 
logistics, etc.)

– Design and implementation constraints

• Qualification provisions to ensure each requirement has been met
– Demonstration, test, analysis, inspection, etc.

• Requirements traceability
– Trace back to the system or subsystem where each requirement applies
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Validation Task

• During validation, the work products produced as a result of 
requirements engineering are assessed for quality

• The specification is examined to ensure that

– all software requirements have been stated unambiguously

– inconsistencies, omissions, and errors have been detected and corrected

– the work products conform to the standards established for the process, the 
project, and the product

• The formal technical review serves as the primary requirements 
validation mechanism

– Members include software engineers, customers, users, and other 
stakeholders
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Questions to ask when Validating 

Requirements

• Is each requirement consistent with the overall objective for the 
system/product?

• Have all requirements been specified at the proper level of abstraction? 
That is, do some requirements provide a level of technical detail that is 
inappropriate at this stage?

• Is the requirement really necessary or does it represent an add-on 
feature that may not be essential to the objective of the system?

• Is each requirement bounded and unambiguous?

• Does each requirement have attribution? That is, is a source (generally, 
a specific individual) noted for each requirement?

(more on next slide)



31

Questions to ask when Validating 

Requirements (continued)

• Do any requirements conflict with other requirements?

• Is each requirement achievable in the technical environment that will 
house the system or product?

• Is each requirement testable, once implemented?
– Approaches: Demonstration, actual test, analysis, or inspection

• Does the requirements model properly reflect the information, 
function, and behavior of the system to be built?

• Has the requirements model been “partitioned” in a way that exposes 
progressively more detailed information about the system?



32

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification



33

Requirements Management Task

• During requirements management, the project team performs a set of 
activities to identify, control, and track requirements and changes to 
the requirements at any time as the project proceeds

• Each requirement is assigned a unique identifier

• The requirements are then placed into one or more traceability tables 

• These tables may be stored in a database that relate features, sources, 
dependencies, subsystems, and interfaces to the requirements

• A requirements traceability table is also placed at the end of the 
software requirements specification
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